Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study...Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Prov- ince of western China. The variation of the soil water repellency among different minor topographies, different depths and differ- ent particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0-3 cm topsoil is significantly greater than that in the 3-6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0-0.05, 0.05-0.01 and 0.01-0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants in- habiting the sand dunes.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421303)the National Natural Sciences Foundation(Grant Nos.40971031,40701002)
文摘Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Prov- ince of western China. The variation of the soil water repellency among different minor topographies, different depths and differ- ent particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0-3 cm topsoil is significantly greater than that in the 3-6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0-0.05, 0.05-0.01 and 0.01-0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants in- habiting the sand dunes.