[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition ...[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition in laboratory, 3 NH4+/NO3- ratios (0/100, 50/50 and 100/0) and 2 water conditions (+PEG,-PEG) were designed for Fengliangyou 7203. [Result] The root-canopy ratio of rice seedlings increased under any of the NH4+/NO3- ratios and water conditions. Under water stress, the root-canopy ratio of rice seedlings changed most greatly at the NH4+/NO3- ratio of 0/ 100; the overall water potential of rice seedlings reached the lowest at the NH4+/ NO3- ratio of 100/0; and the changes of water potential and xylem flow pH were relatively stable at the NH4+/NO3- ratio of 50/50. Under the condition of no water stress, the growth of rice seedlings was best at the NH4+/NO3- ratio of 50/50, followed by the NH4+/NO3- ratios of 0/100 and 100/0. [Conclusion] This study will pro- vide a basis for understanding the relationship between water potential and xylem flow.展开更多
基金Supported by Natural Science Foundation of Guangdong Province(2014 A030307013)~~
文摘[Objective] This study aimed to further explore the dynamics of related physiological indexes of rice seedlings under different NH4+ /NO3- ratio and different water condition. [Method] Under the hydroponic condition in laboratory, 3 NH4+/NO3- ratios (0/100, 50/50 and 100/0) and 2 water conditions (+PEG,-PEG) were designed for Fengliangyou 7203. [Result] The root-canopy ratio of rice seedlings increased under any of the NH4+/NO3- ratios and water conditions. Under water stress, the root-canopy ratio of rice seedlings changed most greatly at the NH4+/NO3- ratio of 0/ 100; the overall water potential of rice seedlings reached the lowest at the NH4+/ NO3- ratio of 100/0; and the changes of water potential and xylem flow pH were relatively stable at the NH4+/NO3- ratio of 50/50. Under the condition of no water stress, the growth of rice seedlings was best at the NH4+/NO3- ratio of 50/50, followed by the NH4+/NO3- ratios of 0/100 and 100/0. [Conclusion] This study will pro- vide a basis for understanding the relationship between water potential and xylem flow.