期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Experiment and analysis of the formation,expansion and dissipation of gasbag in fine sediments based on pore water pressure survey
1
作者 Shiyun Lei Xiujun Guo Haoru Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期91-100,共10页
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor... Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments. 展开更多
关键词 pore water pressure monitoring technology excess pore water pressure gasbag cracks gas migration
下载PDF
Wave-induced pore water pressure in marine cohesive soils 被引量:10
2
作者 CHEN Yunmin LAI Xianghua +2 位作者 YE Yincan HUANG Bo JI Meixiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第4期138-145,共8页
Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore... Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a retum period of 100 a in the Hangzhou Bay, if the wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place. 展开更多
关键词 wave-induced loading cohesion soils LIQUEFACTION pore water pressure buildup Hangzhou Bay
下载PDF
Influence of pore water pressure on upper bound analysis of collapse shape for square tunnel in Hoek-Brown media 被引量:5
3
作者 黄阜 张道兵 +1 位作者 孙志彬 吴贲 《Journal of Central South University》 SCIE EI CAS 2011年第2期530-535,共6页
To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Bro... To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Brown failure criterion. The work rate of pore water pressure,which was regarded as an external rate of work,was taken into account in the framework of limit analysis. Taking advantages of variational calculation,the objective function with respect to detaching curve was optimized to obtain the effective shape of collapsing block for square tunnel. According to the numerical results,it is found that the varying pore water pressure coefficient only affects the height and width of the collapsing block,whereas the shape of collapsing block remains unchanged. 展开更多
关键词 upper hound theorem square tunnel pore water pressure variational calculation Hoek-Brown media
下载PDF
Key technologies for construction of Jinping traffic tunnel with an extremely deep overburden and a high water pressure 被引量:6
4
作者 Shougen CHEN Heng ZHANG Xinrong TAN Liang CHEN 《Journal of Modern Transportation》 2011年第2期94-103,共10页
Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and des... Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period. 展开更多
关键词 key technologies Jinping traffic tunnel extremely deep overburden high water pressure
下载PDF
A fiber Bragg grating based earth and water pressures transducer with three-dimensional fused deposition modeling for soil mass 被引量:4
5
作者 Yue Qin Qiankun Wang +2 位作者 Dongsheng Xu Jiaming Yan Shanshan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期663-669,共7页
A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to me... A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to measure earth and water pressures simultaneously.The proposed transducer has advantages of small size,high sensitivity,low cost,immunity to electromagnetic interference and rapid prototyping.The working principle,design parameters,and manufacturing details are discussed.The proposed transducer was calibrated for earth and water pressures measurement by using weights and a specially designed pressure chamber,respectively.The calibration results showed that the wavelength of the transducer was proportional to the applied pressure.The sensitivity coefficients of the earth and water pressures were 12.633 nm/MPa and 6.282 nm/MPa,respectively.Repeated tests and error analysis demonstrated the excellent stability and accuracy of the earth and water pressure measurements.The performance of the proposed transducer was further verified by a model experimental test and numerical analysis,which indicated that the proposed transducer has great potential for practical applications. 展开更多
关键词 Fused deposition modeling(FDM) Fiber bragg-grating(FBG)sensor Earth pressure water pressure
下载PDF
The numerical study of wave-induced pore water pressure response in highly permeable seabed 被引量:2
6
作者 JIANG Changbo CHENG Yongzhou +1 位作者 CHANG Liuhong XIA Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期46-55,共10页
The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional R... The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes (RANS) equations with a k-s closure, and Forchheimer equations are adopted for flow within the porous media. By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow, a highly efficient coupling between the two flows is implemented. The numerical tests are conducted to study the effects of seabed thickness, porosity, particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response. The results indicate that, as compared with regular wave-induced, solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters. The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed. The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action. 展开更多
关键词 solitary wave regular wave highly permeable SEABED pore water pressure numericalstudy
下载PDF
Characteristics of Pore Water Pressure of Saturated Silt Under Wave Loading 被引量:1
7
作者 高玉峰 张健 +1 位作者 沈扬 闫俊 《China Ocean Engineering》 SCIE EI 2010年第1期161-172,共12页
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo... The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency. 展开更多
关键词 SILT wave loading pore water pressure vibration frequency cyclic triaxial-torsional coupling shear rotation of principal stress
下载PDF
Experimental Study of Pore Water Pressure and Bed Profile Change Under Regular Breaking Waves 被引量:1
8
作者 程永舟 蒋昌波 +2 位作者 赵利平 潘昀 李青峰 《China Ocean Engineering》 SCIE EI 2012年第3期457-468,共12页
There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy... There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed. 展开更多
关键词 breaking wave pore water pressure sloping sandy seabed flume experiment
下载PDF
Attenuation-type and failure-type curve models on accumulated pore water pressure in saturated normal consolidated clay 被引量:1
9
作者 赵春彦 《Journal of Central South University》 SCIE EI CAS 2012年第7期2047-2053,共7页
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat... Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models. 展开更多
关键词 saturated normal consolidation clay equivalent dynamic stress level accumulated pore water pressure model attenuation-type curve failure-type curve
下载PDF
Pore Water Pressure Buildup Under Cyclic Rotation of Principal Stress and Stability Evaluation of Seabed Deposit
10
作者 Shen Ruifu , Wang Hongjin , Zhou Jinxing and Zhou Keji Former graduate student of Tsinghua University, now works in Nanjing Hydraulic Research Institute, Nanjing 210029Professor, Tsinghua University, Beijing 100084 Senior Engineer, Tsinghua University, Beijing 100084 《China Ocean Engineering》 SCIE EI 1994年第4期471-482,共12页
The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from t... The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit. 展开更多
关键词 rotation of principal stress direction pore water pressure generalized shear strain residual deformation
下载PDF
A Test Model of Water Pressures within a Fault in Rock Slope
11
作者 Yang Tong Wang Baoxue Hu Heng Civil and Environmental Engineering School, Beijing Institute of Technology , Beijing 100083 《Journal of China University of Geosciences》 SCIE CSCD 2001年第4期309-311,共3页
This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function,... This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence. 展开更多
关键词 rock slope water pressure model test.
下载PDF
Pore Water Pressure Arising during Pile Drilling in Sand
12
作者 Abdrabbo F. Khaled El-Sayed Gaaver 《Journal of Civil Engineering and Architecture》 2011年第4期331-340,共10页
The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the... The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads. 展开更多
关键词 Pore water pressure pile drilling IMPERFECTIONS CFA water percolation
下载PDF
An Experimental Study on the Wave-Induced Pore Water Pressure Change and Relative Influencing Factors in the Silty Seabed
13
作者 LI Anlong LUO Xiaoqiao +2 位作者 LIN Lin YE Qing LI Chunyu 《Journal of Ocean University of China》 SCIE CAS 2014年第6期911-916,共6页
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heigh... In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately. 展开更多
关键词 wave action silty seabed pore water pressure development influencing factor
下载PDF
Experimental study on pore water pressure dissipation of mucky soil
14
作者 Xianwei ZHANG Changming WANG Junxia LI Bin WANG 《Global Geology》 2008年第4期251-255,共5页
Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using re... Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure.The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading.What is more,the pore water pressure coefficient of mucky soil is less than 1.As the compactness of soil increases and moisture content reduces,the value of B reduces.There is a staggered dissipating in the process of consolidation,in which it is a mutate point when U/P is 80%.It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation. 展开更多
关键词 mucky soil pore water pressure consolidation pressure coefficient of pore pressure
下载PDF
Mechanism Analysis of Pore Water Pressure Fluctuation During Clay Precompression Consolidation
15
作者 Yueqin Wu Dengheng Zheng +4 位作者 Chenglong Jiao Siying Xie Qiaojing Li Yingyi Tan Yuling Tu 《World Journal of Engineering and Technology》 2024年第4期987-995,共9页
Pore water pressure fluctuations are an inherent phenomenon during the consolidation process of clayey foundations, and understanding its mechanism is crucial for comprehending the consolidation process and addressing... Pore water pressure fluctuations are an inherent phenomenon during the consolidation process of clayey foundations, and understanding its mechanism is crucial for comprehending the consolidation process and addressing issues such as drainage blockage during consolidation. This study investigates the consolidation behavior of clay, particularly focusing on pore water pressure fluctuations during the consolidation process of dredged marine sedimentary mud from Daya Bay, Guangdong Province. Given the prevalent use of clay in large-scale construction projects in southern China, understanding the factors influencing pore water pressure is crucial for optimizing consolidation times and improving construction efficacy. Using a custom vacuum preloading model, the research explores the impact of sodium hydroxide on the bound water content and its subsequent effects on pore water pressure dynamics. Experimental findings reveal a distinct inflection point in pore water pressure dissipation, suggesting that particle migration and bound water interactions contribute to the observed fluctuations. These results provide valuable insights for enhancing engineering applications in clay consolidation and mitigating drainage issues, ultimately informing construction practices and reducing project timelines. 展开更多
关键词 Clay Consolidation Pore water pressure Bound water
下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
16
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
下载PDF
Application of pre-alloyed powders for diamond tools by ultrahigh pressure water atomization 被引量:2
17
作者 储志强 郭学益 +3 位作者 刘东华 谭彦显 李栋 田庆华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2665-2671,共7页
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention... Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders. 展开更多
关键词 ultrahigh pressure water atomization pre-alloyed powders diamond tools sintered segments
下载PDF
Full-scale experiment for segmental linings of deep-buried shield tunnels bearing high inner water pressure:Comparison of mechanical behaviors of continuous-and stagger-jointed structures 被引量:5
18
作者 Long Zhou Yi Shen +3 位作者 Linxing Guan Zhiguo Yan Wei Sun Yaoliang Li 《Underground Space》 SCIE EI CSCD 2023年第1期252-266,共15页
Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical pr... Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied. 展开更多
关键词 Shield tunnel Inner water pressure Continuous-jointed lining Stagger-jointed lining Full-scale experiment
原文传递
Soil effect on the bearing capacity of a double-lining structure under internal water pressure 被引量:1
19
作者 Dong-mei ZHANG Xiang-hong BU +4 位作者 Jian PANG Wen-ding ZHOU Yan JIANG Kai JIA Guang-hua YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第11期863-881,共19页
Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The ... Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The effect of the interface between the segmental and inner linings on the bearing capacity has been widely investigated;however,the effect of soil on the internal water pressure bearing capacity has not been emphasized enough.Therefore,in this study,model tests and an analytical solution are presented to elucidate the effect of soil on the internal water pressure bearing capacity.First,model tests are conducted on double-lining models under sandy soil and highly weathered argillaceous siltstone conditions.The internal force and earth pressure under these different soil conditions are then compared to reveal the contribution of soil to the internal water pressure bearing capacity.Following this,an analytical solution,considering the soil–double-lining interaction,is proposed to further investigate the contribution of the soil.The analytical solution is verified with model tests.The analytical solution is in good agreement with the model test results and can be used to evaluate the mechanical behavior of the double-lining and soil contribution.The effect of soil on the bearing capacity is found to be related with the elastic modulus of the soil and the deformation state of the double-lining.Before the double-lining cracks,the sandy soil contributes 3.7%of the internal water pressure but the contribution of the soil rises to 10.4%when it is the highly weathered argillaceous siltstone.After the double-lining cracks,the soil plays an important role in bearing internal water pressure.The soil contributions of sandy soil and highly weathered argillaceous siltstones are 10.5%and 27.8%,respectively.The effect of soil should be considered in tunnel design with the internal water pressure. 展开更多
关键词 Shield tunnel Double-lining Bearing capacity Soil condition Internal water pressure
原文传递
Large-scale model test study on the water pressure resistance of construction joints of karst tunnel linings 被引量:1
20
作者 Meng HUANG Mingli HUANG +2 位作者 Ze YANG Yuan SONG Zhien ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第8期1249-1263,共15页
Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnel... Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications. 展开更多
关键词 karst tunnel lining construction joint water pressure resistance large-scale model test numerical calculations
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部