In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to ...In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.展开更多
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s...The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.展开更多
The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather co...The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide.展开更多
The water abundance of mine floor limestone needs to be solved urgently as the average depth of coal mining in China has increased gradually. A method is presented to discuss water abundance with the numerical and phy...The water abundance of mine floor limestone needs to be solved urgently as the average depth of coal mining in China has increased gradually. A method is presented to discuss water abundance with the numerical and physical layered geoelectrical model being established in the half-space, full-space and full-space with tunnel, respectively. The parameters of water abundance are changed in this study, which includes water quantity, water content and volume of abnormity of water-containing abnormity. Results indicate that the different work fields have different macroscopic influences on the apparent resistivity,and the water abundance parameters of water-containing abnormity have quantitative relationship with the apparent resistivity mean in abnormal regions(three-dimensional space region). The quantitative relationships are shown as following: firstly, the amount of water injection has negative linear correlation with the apparent resistivity mean; secondly, when abnormity is unsaturated, there is a negative power function relationship between water content and apparent resistivity mean; thirdly, the volume of abnormity and apparent resistivity mean behave as a decreasing power function law.展开更多
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle s...Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle standing in the way of its wide application. Adopting the Taylor series expansion method and solving the integral equation matrix, the second order kernel approximation method can be obtained, namely K2_SPH, which is discussed in this paper. This method is similar to the Finite Particle Method. With the improvement of kernel approximation, some numerical techniques should be adopted for different types of boundaries, such as a free surface boundary and solid boundary, which are two key numerical techniques of K2_SPH for water wave simulation. This paper gives some numerical results of two dimensional water wave simulations involving standing wave and sloshing tank problems by using K2_SPH. From the comparison of simulation results, the K2_SPH method is more reliable than standard SPH.展开更多
A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes...A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.展开更多
A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze...A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.展开更多
Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang ...Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 3.2-5.2 mg/L, CODMn 4.7-6.8 mg/L, NH3-N 0.46-1.8 mg/L, TP 0.23-0.48 mg/L, and in the rainy period, the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 0.69-0.73 mg/L, CODM, 1.9-2.3 mg/L, NH3-N 0.25-0.38 mg/L, TP 0.14-0.17 mg/L.These simulated values were closed to the monitoring values of pollution concentrations of Neijiang, which indicated that RMA4 was certain practical in the river water quality simulation, and simulation results have a certain degree of reliability, and it provides a scientific planning and management method for the river pollution control.展开更多
The probability of crane living in reedy wetlands can reach 100%, at the same time, the area of reed, the water level and adjacent water area are main factors which control the crane'...The probability of crane living in reedy wetlands can reach 100%, at the same time, the area of reed, the water level and adjacent water area are main factors which control the crane's habitat selection. We all know that all these factors are spatially heterogeneous. For the Xianghai wetland safety and to protect the Xianghai wetland habitat of crane, this paper has mainly identified a solution to these problems. The wetland information is extracted from the TM images, which reflect the whole wetland landscape and are very important for both quantitative analysis of remote sensing observation of the earth system and positioning analysis in GIS database that is automatically extracted from DEM. The DEM for Xianghai characteristics of topography is created. On the basis of the GRID SUBMODULE, applying the GIS spatial overlay analysis, the relationship between the water level and the reed area below the water level and the rating distribution maps of reed area above water level is established. When the water level reaches the altitude of 165 m, the reed area, 981.2 ha is maximum, i.e., the water level of 165 m is the optimal.展开更多
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod...Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.展开更多
1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surf...1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.展开更多
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equ...This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarizati...The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days’ immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve’s change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6 mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.展开更多
The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon t...The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.展开更多
Based on the observation data analysis and numerical simulation, the development of an eastwardmoving vortex generated in Southwest China during the period 25 27 June 2003 is studied. The water vapor budget analysis i...Based on the observation data analysis and numerical simulation, the development of an eastwardmoving vortex generated in Southwest China during the period 25 27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vortieity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vortieity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.展开更多
The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the ...The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the divergent one,and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube.Here,we present an approach to explore these questions by changing the deformation position of a carbon nanotube.The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube.Different from the macroscopic level,we find water flux asymmetry(water flows more easily along the convergent direction than along the divergent one),which plays a key role in a nano water pump driven by a ratchet-like mechanism.We explore the mechanism and calculate the water flux by means of the Fokker-Planck equation and find that our theoretical results are well consistent with the simulation results.Furthermore,the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases.These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided...This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.展开更多
文摘In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.
基金This project is supported by National Natural Science Foundation of China(No.10342003).
文摘The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.
基金supported by the National Natural Science Foundation of China(Grant Nos.40906044,41076048 and 41376012)the Fundamental Research Funds for the Central Universities(Grant No.2011B05714)the Doctoral Starting up Foundation of College of Meteorology and Oceanography of the PLA University of Science and Technology,China
文摘The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide.
文摘The water abundance of mine floor limestone needs to be solved urgently as the average depth of coal mining in China has increased gradually. A method is presented to discuss water abundance with the numerical and physical layered geoelectrical model being established in the half-space, full-space and full-space with tunnel, respectively. The parameters of water abundance are changed in this study, which includes water quantity, water content and volume of abnormity of water-containing abnormity. Results indicate that the different work fields have different macroscopic influences on the apparent resistivity,and the water abundance parameters of water-containing abnormity have quantitative relationship with the apparent resistivity mean in abnormal regions(three-dimensional space region). The quantitative relationships are shown as following: firstly, the amount of water injection has negative linear correlation with the apparent resistivity mean; secondly, when abnormity is unsaturated, there is a negative power function relationship between water content and apparent resistivity mean; thirdly, the volume of abnormity and apparent resistivity mean behave as a decreasing power function law.
基金Supported by the National Natural Science Fundation of China (51009034)Foundational Research Funds of Harbin Engineering University (HEUFT05023, HEUFP05001)+1 种基金Foundational Research Funds for the central Universities (HEUCF100102)The 111 program (B07019)
文摘Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. However, its low accuracy of kernel approximation when particles are distributed disorderly or located near the boundary is an obstacle standing in the way of its wide application. Adopting the Taylor series expansion method and solving the integral equation matrix, the second order kernel approximation method can be obtained, namely K2_SPH, which is discussed in this paper. This method is similar to the Finite Particle Method. With the improvement of kernel approximation, some numerical techniques should be adopted for different types of boundaries, such as a free surface boundary and solid boundary, which are two key numerical techniques of K2_SPH for water wave simulation. This paper gives some numerical results of two dimensional water wave simulations involving standing wave and sloshing tank problems by using K2_SPH. From the comparison of simulation results, the K2_SPH method is more reliable than standard SPH.
文摘A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.
基金Funded by the National Natural Science Foundation of China (No.59838300 No.59778021)
文摘A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.
文摘Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 3.2-5.2 mg/L, CODMn 4.7-6.8 mg/L, NH3-N 0.46-1.8 mg/L, TP 0.23-0.48 mg/L, and in the rainy period, the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 0.69-0.73 mg/L, CODM, 1.9-2.3 mg/L, NH3-N 0.25-0.38 mg/L, TP 0.14-0.17 mg/L.These simulated values were closed to the monitoring values of pollution concentrations of Neijiang, which indicated that RMA4 was certain practical in the river water quality simulation, and simulation results have a certain degree of reliability, and it provides a scientific planning and management method for the river pollution control.
基金Knowledge Innovation Project of CAS No.KZCX2-SW-320-1+1 种基金 National Key Project for Science and Technology No.2001-BA608B-03-02
文摘The probability of crane living in reedy wetlands can reach 100%, at the same time, the area of reed, the water level and adjacent water area are main factors which control the crane's habitat selection. We all know that all these factors are spatially heterogeneous. For the Xianghai wetland safety and to protect the Xianghai wetland habitat of crane, this paper has mainly identified a solution to these problems. The wetland information is extracted from the TM images, which reflect the whole wetland landscape and are very important for both quantitative analysis of remote sensing observation of the earth system and positioning analysis in GIS database that is automatically extracted from DEM. The DEM for Xianghai characteristics of topography is created. On the basis of the GRID SUBMODULE, applying the GIS spatial overlay analysis, the relationship between the water level and the reed area below the water level and the rating distribution maps of reed area above water level is established. When the water level reaches the altitude of 165 m, the reed area, 981.2 ha is maximum, i.e., the water level of 165 m is the optimal.
基金Supported by the National Basic Research Program of China(2014CB745100)the National Natural Science Foundation of China(21576197)+1 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06700)Tianjin Penglai 19-3 Oil Spill Accident Compensation Project(19-3 BC2014-03)
文摘Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.
文摘1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.
基金Supported by the Fund of National Nature Sciences of China
文摘This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
文摘The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days’ immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve’s change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6 mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.
基金Project(2018YFC1900304)supported by the National Key R&D Program of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,ChinaProject(2017SK2420)supported by the Science and Technology of Hunan Province,China。
文摘The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.
文摘Based on the observation data analysis and numerical simulation, the development of an eastwardmoving vortex generated in Southwest China during the period 25 27 June 2003 is studied. The water vapor budget analysis indicates that water vapor in the lower troposphere over Southwest China is transported downstream to the Yangtze and Huaihe River valleys by the southwesterly winds south of the vortex center. A potential vortieity (PV) budget analysis reveals that a positive feedback between latent heat release and low-level positive vortieity plays a vital role in the sudden development and eastward movement of the vortex. Numerical simulations are consistent with these results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005093,10932010,and 10972199)the Zhejiang Provincial Natural Science,China (Grant Nos. Z6090556,Y6100384,and Y607425)+1 种基金the Zhejiang Provincial Education Department,China (Grant No. Y200805556)the Hong Kong Polytechnic University,China (Grant No. G-YG84)
文摘The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the divergent one,and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube.Here,we present an approach to explore these questions by changing the deformation position of a carbon nanotube.The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube.Different from the macroscopic level,we find water flux asymmetry(water flows more easily along the convergent direction than along the divergent one),which plays a key role in a nano water pump driven by a ratchet-like mechanism.We explore the mechanism and calculate the water flux by means of the Fokker-Planck equation and find that our theoretical results are well consistent with the simulation results.Furthermore,the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases.These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
基金supported by the National Natural Science Foundation of China (10972197)
文摘This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.