The daily soil water budgets in the red soil areas of central Jiangxi Province,southern China,were investigated with a large-scale weighing lysimeter and runoff plots. From 1998 to 2000,peanuts (Arachis hypogaea L.) a...The daily soil water budgets in the red soil areas of central Jiangxi Province,southern China,were investigated with a large-scale weighing lysimeter and runoff plots. From 1998 to 2000,peanuts (Arachis hypogaea L.) and rape (Brassica napus L.) were planted in the lysimeter and in 1999,peanuts were planted in the runoff plots. The soil water budget components including rainfall,runoff,percolation and evapotranspiration were measured directly or calculated by Richards' equation and water balance equation. The results showed that most rainfall,including rainstorms,occurred from March to July,and induced the greatest soil water percolation during the year. The evapotranspiration was still large from July to September when rainfall was minimal. Thus,the lack of synchronization in soil water inputs and losses was disadvantageous to crops growing in this region. Among the soil water losses,percolation was the largest,followed by evapotranspiration,and then soil runoff. Runoff was very small on farmland with crops. It was significantly different from the uncultivated uplands where large-scale runoff was usually reported. The soil water storage fluctuated sinusoidally,with a large amplitude in the rainy season and a small amplitude in the dry season.展开更多
In this study, three tropical cyclones (TCs) that passed through the Taiwan Strait were analyzed; our results show that precipitation is not directly related to the intensity of TCs. From the perspective of water bu...In this study, three tropical cyclones (TCs) that passed through the Taiwan Strait were analyzed; our results show that precipitation is not directly related to the intensity of TCs. From the perspective of water budget, moisture flux convergence was dominant and contributed -70% of the moisture for TC precipitation over the ocean and almost all over the land, especially inside the TC circulation. Their spatial distributions were also similar. Evaporation contributed -30% of the moisture for precipitation over the ocean but changed little with the time. Moisture flux convergence can be divided into two parts: wind convergence and moisture advection. Moisture flux convergence was mostly due to wind convergence, which was dominant in the southwestern quadrants of the TCs. Moisture advection was located in the northern area, and becomes relatively important when the TCs approached the land. The moisture flux convergence and its two parts varied during TC movement, with strengthening and contraction of moisture convergence present near landfall. The vertical structure of the three TC eases all indicated that the moisture convergence was mainly confined to the lower atmosphere under 800 hPa and a weak divergence region was present in the middle troposphere around 550 hPa.展开更多
In this article, annual evapotranspiration(ET) and net primary productivity (NPP) of fourtypes of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These fourvegetation types inclu...In this article, annual evapotranspiration(ET) and net primary productivity (NPP) of fourtypes of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These fourvegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model wasused to calculate annual ET and NPP for eachvegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored byLushi meteorological station was extrapolated tocover the basin using MT-CLIM, a mountainmicroclimate simulator. The output files of MT-CLIM were used to feed Biome-BGC. We usedaverage ecophysiological values of each type ofvegetation supplied by Numerical TerradynamicSimulation Group (NTSG) in the University ofMontana as input ecophysiological constants file.The estimates of daily NPP in early July and annualET on these four biome groups were comparedrespectively with field measurements and other studies.Daily gross primary production (GPP) of evergreenneedle leaf forest measurements were very close tothe output of Biome-BGC, but measurements ofbroadleaf forest and dwarf shrub were much smallerthan the simulation result. Simulated annual ET andNPP had a significant correlation with precipitation,indicating precipitation is the major environmentalfactor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for theinterannual ET and NPP variations.展开更多
The objective of this study was to analyze the water budget of a small basin in the northern of Loess Plateau. A small basin, Liudaogou in the northern Loess Plateau was chosen as the study area. The numerical calcula...The objective of this study was to analyze the water budget of a small basin in the northern of Loess Plateau. A small basin, Liudaogou in the northern Loess Plateau was chosen as the study area. The numerical calculation of surface runoff was applied to results of the field survey, and components of monthly water budget were estimated. The unit area of 1 km2 was selected as the index area for the estimation. A component of habitant water consumption was added to the water budget to consider the contribution of human activity. Results indicated that the water storage was negative in May, June and July while the annual amount was approximately 0.0. Evaportanspiration attained maximum in August and its annual total accounted for 74.2% of annual precipitation. Results of this study are significant for the sustainable water conservation and utilization in the northern of Loess Plateau where annual water resources are relatively deficient.展开更多
The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical exp...The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.展开更多
In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and watervapor flux divergence in different seasons over northeast China and the water balance of that area...In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and watervapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA- Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is variable slightly, generally as a constant. Likewise, in different seasons, the total precipitation has a much greater influence than the evaporation on the moisture sink.展开更多
Gaza has a water crisis and faces serious challenges for the future sustainability of its water resources. Land-use change has an expected effect on water budget of the Gaza Strip. Three different land cover scenarios...Gaza has a water crisis and faces serious challenges for the future sustainability of its water resources. Land-use change has an expected effect on water budget of the Gaza Strip. Three different land cover scenarios;the and cover of 2007, land cover of 2020, and full urbanization land cover were simulated independently using The Automated Geospatial Watershed Assessment (AGWA) tool which work under the umbrella of GIS. In general, the simulation results indicate that land-cover changes will significantly alter the hydrologic response of Gaza region. Percolation is expected to decrease in all options as urban areas are expanded where as the simulated surface runoff reflected a relative departure from the first scenario comparing with other scenarios. In the baseline scenario (2007), the simulated surface runoff and percolation represent 12% and 41% respectively from the water budget components of the Gaza Strip. In year 2020, these values were expected by the simulation results to be 20% and 27% respectively. A unique linear relationship between the relative change in urban area and the corresponding relative change in surface water has been investigated from the simulation results. The analysis of the three urbanization scenarios can give decision makers better understand for the future situation and assist them to advance towards achieving sustainable development planning for water resources system in the Gaza Strip.展开更多
The rapid shrinkage of the surface area reflects the long-term deficit water budget of Qinghai Lake. Study of the yearly hydrology and meteorology in the lake catchment basin and the hydrologic factors as well as wate...The rapid shrinkage of the surface area reflects the long-term deficit water budget of Qinghai Lake. Study of the yearly hydrology and meteorology in the lake catchment basin and the hydrologic factors as well as water budget led to the conclusion that evaporation exceeding the water input resulted in the drop of lake level, thai the obvious decrease of runoff to the lake and precipitation on the catchment accelerated the falling of lake level before 1987. and that increase of about 6.7% in rainfall on the whole basin will balance the lake’s water budget.展开更多
In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has ...In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.展开更多
This paper presents the consumptive water use for freshwater pond aquaculture for semi-intensive carps farming practices. The consumptive use of water includes evaporation loss, seepage loss and water exchanges requir...This paper presents the consumptive water use for freshwater pond aquaculture for semi-intensive carps farming practices. The consumptive use of water includes evaporation loss, seepage loss and water exchanges requirements. The water requirement has been estimated to be10.3 m3/Kg of fish production under present study for semi-intensive culture and with supplemental feeding. Out of which7.6 m3/Kg of fish production is system associated requirement. On an average the evaporation loss from the pond is1498.3 mm/year and seepage loss per year is about1182.60 mm/year. Seepage and water exchange losses recharge the ground water aquifers and if they are treated and recycled, the water use in aquaculture can be reduced significantly. A further reduction in fresh water use in pond aquaculture is possible through development of intensive and superintensive culture systems and aqua feeds.展开更多
Water budgets terms, evapotranspiration (E), precipitation (P), runoff (N), moisture convergence (MC) and both surface as well as atmospheric residual terms have been computed with National Centers for Environmental P...Water budgets terms, evapotranspiration (E), precipitation (P), runoff (N), moisture convergence (MC) and both surface as well as atmospheric residual terms have been computed with National Centers for Environmental Prediction (NCEP) (1948-2007) and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 (1958-2001) reanalysis data sets for Central Southwest Asia (CSWA).The domain of the study is 45° - 75°E & 25° - 40°N. Only the land area has been used in these calculations. It is noted in the comparison of both reanalysis data sets with Global Precipitation Climatology Centre (GPCC) that all three data sets record different precipitation before 1970. The maximum is from NCEP and the minimum with ERA-40. However, after 1970 all the data sets record almost the same precipitation. ERA-40 computes two phases of MC. Before 1975, the domain acts as a moisture source, whereas after 1975 it behaves as a moisture sink. The region CSWA is divided into six sub areas with rotational principle factor analysis and we distinguish them by different approached weather systems acting on each area. Finally, NCEP yearly precipitation is further divided into seasons;winter (November to April) and summer (May to October) and two phases have been noted. The variation in winter precipitation is more than summer during last 60-year analysis.展开更多
The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of ...The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Pondicherry is one such region with recent alluvium as the major formation. Since the study area forms a part of the coastal aquifer system this behaves as a fragile ecosystem. The present study has been attempted to calculate the extraction of water and to estimate the amount of recharge into this alluvial aquifer by using groundwater level variations. The monthly water level fluctuation was observed during the study period (2000-2002) in eighteen locations. The maximum rise in groundwater level observed during 2000 was considered as the initial water level for the study and the subsequent decline in water level (draw down) was monitored monthly until the rising trend was noted. This indicates the fall in water level due to extraction. Later keeping the deepest draw down as the initial value increasing water level trend was studied until there was a notice of decline in groundwater level. This indicates as the rise in water level due to recharge. This method of observation carried out at a single location was adopted for all eighteen locations. The spatial representation of these data for eighteen locations were carried out by using GIS and the area occupied by different groundwater level contours were calculated and the amount of water withdrawn/re- charged was estimated. The maximum recharge was noted in the central and the northern part of the study area when compared to the other regions. Similarly, the maximum discharge was noted in the northern and the southern part of the study area during the study period.展开更多
This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,...This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.展开更多
The imbalance of land-surface water budget was discovered in past studies, but there have been few further investigations on the relevant causes. To probe into the problem, annual variations of precipitation and land-...The imbalance of land-surface water budget was discovered in past studies, but there have been few further investigations on the relevant causes. To probe into the problem, annual variations of precipitation and land-surface evapotranspiration were analyzed by using the historical observation data from a compre- hensive land-surface observation base of LOPEX (Loess Plateau Experiment). A remarkable imbalance in the land-surface water budget was found, and the total annual imbalance reached 20.6%. Then, the impact factors related to additional water budget components and observational methods were studied. The total annual imbalance could be reduced to 3.8% by using a combination of compensated land-surface water bud- get components and the surface evapotranspiration values obtained from the large-scale weighing lysimeter rather than from the eddy correlation method.展开更多
The Soil and Water Assessment Tool(SWAT)model was used to assess the impacts of different land use scenarios on hydrological processes in the Fuhe watershed in Poyang Lake Basin,East China.A total of 12 model paramete...The Soil and Water Assessment Tool(SWAT)model was used to assess the impacts of different land use scenarios on hydrological processes in the Fuhe watershed in Poyang Lake Basin,East China.A total of 12 model parameters were calibrated with observed monthly runoff data for 1982-1988 and validated for 1991-1998 for baseline conditions.The baseline test results of R2 and Nash-Sutcliffe model efficiency(NSE)values ranged between 0.88 and 0.94 across the calibration and validation periods,indicating that SWAT accurately replicated the Fuhe watershed streamflow.Several different land use scenarios were then simulated with the model,focusing on the impacts of land use change on the hydrology of the watershed.The results of hypothetical scenario simulations revealed that surface runoff declined while groundwater recharge and evapotranspiration(ET)increased,as forest land,agriculture land and/or grassland areas increased,as well as when paddy field and urban areas decreased.These results further showed that forest land has a higher capacity to conserve the water as compared to pasture land.The results of the real scenario simulations revealed that urbanization is the strongest contributor to changes in surface runoff,water yield,and ET.Urbanization can be considered as a potential major environmental stressor controlling hydrological components.展开更多
Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above norm...Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above normal after 2002;in recent decades there has been rapid warming of surface air,moistening and wind speed decrease.To investigate the influences of recent climatic changes on the water budget,this study simulates the surface water budget at CMA stations within and surrounding the source region during 1960-2006,using an improved land surface model.Results indicate that the spatial pattern of precipitation change is an important factor(except for precipitation amount and intensity) in determining the response of runoff to precipitation changes.Low runoff in the 1990s was consistent with precipitation amount and intensity.The recovery of precipitation after 2002 is mainly from increased precipitation in the dry area of the source region.Evaporation was mainly limited by water availability in this dry area,and thus most of the precipitation increase was evaporated.By contrast,energy availability was a more important influence on evaporation in the wet area.There was more evaporation in the wet area because of rapid warming,although precipitation amount partly decreased and partly increased,contributing to the reduction of runoff after 2002.This control on evaporation and its response,together with the modified spatial pattern of precipitation,produced a water budget unfavorable for runoff generation in the source region during recent years.展开更多
In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analy...In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analyze the water quality and nitrogen budget including various forms of nitrogen, microorganism and chlorophyll-a. Nitrogen budget was calculated based on feed input, shrimp harvest, water quality and renewal rate, and collection of bottom mud. Input nitrogen retained in shrimp was 23.58% and 19.10% respectively for WES and RAS, and most of nitrogen waste retained in water and bottom mud. In addition, most of nitrogen in the water of WES was TAN(21.32%) and nitrite(15.30%), while in RAS was nitrate(25.97%), which means that more than 76% of ammonia and nitrite were removed. The effect of microalgae in RAS and WES was negligible. However, bacteria played a great role in the culture system considering the highest cultivable cultivable bacterial populations in RAS and WES were 1.03×10^(10) cfu mL^(-1) and 2.92×10~9 cfu mL^(-1), respectively. Meanwhile the proportion of bacteria in nitrogen budget was 29.61% and 24.61% in RAS and WES, respectively. RAS and WES could realize shrimp high stocking culture with water consuming rate of 1.25 m^3 per kg shrimp and 3.89 m^3 per kg shrimp, and power consuming rates of 3.60 kwh per kg shrimp and 2.51 kwh per kg shrimp, respectively. This study revealed the aquatic environment and nitrogen budget of intensive shrimp farming in detail, which provided the scientific basis for improving the industrial shrimp farming.展开更多
The spatiotemporal variations of water vapor budget(Bt)and their relationships with local precipitation over the Tibetan Plateau(TP)are critical for understanding the characteristics of spatial distributions and evolu...The spatiotemporal variations of water vapor budget(Bt)and their relationships with local precipitation over the Tibetan Plateau(TP)are critical for understanding the characteristics of spatial distributions and evolutions of water resources over the TP.Based on a boundary of the TP,this paper explored the spatiotemporal characteristics of Bt over the TP using the European Centre for Medium-Range Weather Forecasts interim(ERA-Interim)reanalysis datasets.On the climatological mean,the TP is a water vapor sink throughout four seasons and the seasonal variation of Bt is closely associated with the water vapor budget at the southern boundary of the TP.The transient water vapor transport is quasimeridional in the mid-and high-latitude areas and plays a leading role in winter Bt but contributes little in other seasons.At the interannual timescale,the variation of Bt is mainly determined by anomalous water vapor transports at the western and southern boundaries.The Bay of Bengal,the North Arabian Sea,and mid-latitude West Asia are the main sources of excessive water vapor for a wetter TP.At the southern and western boundaries,the transient water vapor budget regulates one-third to four-fifths of Bt anomalies.Moreover,the variability of the TP Bt is closely associated with precipitation over the central-southern and southeastern parts of the TP in summer and winter,which is attributed to the combined effect of the stationary and transient water vapor budgets.Given the role of the transient water vapor transport,the linkage between the TP Bt and local precipitation is tighter.展开更多
The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibriu...The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds.展开更多
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-407).
文摘The daily soil water budgets in the red soil areas of central Jiangxi Province,southern China,were investigated with a large-scale weighing lysimeter and runoff plots. From 1998 to 2000,peanuts (Arachis hypogaea L.) and rape (Brassica napus L.) were planted in the lysimeter and in 1999,peanuts were planted in the runoff plots. The soil water budget components including rainfall,runoff,percolation and evapotranspiration were measured directly or calculated by Richards' equation and water balance equation. The results showed that most rainfall,including rainstorms,occurred from March to July,and induced the greatest soil water percolation during the year. The evapotranspiration was still large from July to September when rainfall was minimal. Thus,the lack of synchronization in soil water inputs and losses was disadvantageous to crops growing in this region. Among the soil water losses,percolation was the largest,followed by evapotranspiration,and then soil runoff. Runoff was very small on farmland with crops. It was significantly different from the uncultivated uplands where large-scale runoff was usually reported. The soil water storage fluctuated sinusoidally,with a large amplitude in the rainy season and a small amplitude in the dry season.
基金grants from the 908 Special Projects of China,the National Basic Research Program of China,the Special Scientific Research Project for Public Interest,the National Natural Science Foundation of China
文摘In this study, three tropical cyclones (TCs) that passed through the Taiwan Strait were analyzed; our results show that precipitation is not directly related to the intensity of TCs. From the perspective of water budget, moisture flux convergence was dominant and contributed -70% of the moisture for TC precipitation over the ocean and almost all over the land, especially inside the TC circulation. Their spatial distributions were also similar. Evaporation contributed -30% of the moisture for precipitation over the ocean but changed little with the time. Moisture flux convergence can be divided into two parts: wind convergence and moisture advection. Moisture flux convergence was mostly due to wind convergence, which was dominant in the southwestern quadrants of the TCs. Moisture advection was located in the northern area, and becomes relatively important when the TCs approached the land. The moisture flux convergence and its two parts varied during TC movement, with strengthening and contraction of moisture convergence present near landfall. The vertical structure of the three TC eases all indicated that the moisture convergence was mainly confined to the lower atmosphere under 800 hPa and a weak divergence region was present in the middle troposphere around 550 hPa.
文摘In this article, annual evapotranspiration(ET) and net primary productivity (NPP) of fourtypes of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These fourvegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model wasused to calculate annual ET and NPP for eachvegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored byLushi meteorological station was extrapolated tocover the basin using MT-CLIM, a mountainmicroclimate simulator. The output files of MT-CLIM were used to feed Biome-BGC. We usedaverage ecophysiological values of each type ofvegetation supplied by Numerical TerradynamicSimulation Group (NTSG) in the University ofMontana as input ecophysiological constants file.The estimates of daily NPP in early July and annualET on these four biome groups were comparedrespectively with field measurements and other studies.Daily gross primary production (GPP) of evergreenneedle leaf forest measurements were very close tothe output of Biome-BGC, but measurements ofbroadleaf forest and dwarf shrub were much smallerthan the simulation result. Simulated annual ET andNPP had a significant correlation with precipitation,indicating precipitation is the major environmentalfactor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for theinterannual ET and NPP variations.
基金Supported by JSPS Core University Program, Japan CAS "Western Light" (2006YB04)
文摘The objective of this study was to analyze the water budget of a small basin in the northern of Loess Plateau. A small basin, Liudaogou in the northern Loess Plateau was chosen as the study area. The numerical calculation of surface runoff was applied to results of the field survey, and components of monthly water budget were estimated. The unit area of 1 km2 was selected as the index area for the estimation. A component of habitant water consumption was added to the water budget to consider the contribution of human activity. Results indicated that the water storage was negative in May, June and July while the annual amount was approximately 0.0. Evaportanspiration attained maximum in August and its annual total accounted for 74.2% of annual precipitation. Results of this study are significant for the sustainable water conservation and utilization in the northern of Loess Plateau where annual water resources are relatively deficient.
基金Natural Science Foundation of Jiangsu Province grant(BK2012465)National Natural Science Foundation of China(41205065,41475045,41005046)+1 种基金National Basic Research Program of China(2010CB428602)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution
文摘The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.
基金Project supported by the State Key Development Program for Basic Research of China(Grant Nos.2013CB430204 and 2012CB955902)the National Natural Science Foundation of China(Grant Nos.41175067,41175084,and 41205040)
文摘In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and watervapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA- Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is variable slightly, generally as a constant. Likewise, in different seasons, the total precipitation has a much greater influence than the evaporation on the moisture sink.
文摘Gaza has a water crisis and faces serious challenges for the future sustainability of its water resources. Land-use change has an expected effect on water budget of the Gaza Strip. Three different land cover scenarios;the and cover of 2007, land cover of 2020, and full urbanization land cover were simulated independently using The Automated Geospatial Watershed Assessment (AGWA) tool which work under the umbrella of GIS. In general, the simulation results indicate that land-cover changes will significantly alter the hydrologic response of Gaza region. Percolation is expected to decrease in all options as urban areas are expanded where as the simulated surface runoff reflected a relative departure from the first scenario comparing with other scenarios. In the baseline scenario (2007), the simulated surface runoff and percolation represent 12% and 41% respectively from the water budget components of the Gaza Strip. In year 2020, these values were expected by the simulation results to be 20% and 27% respectively. A unique linear relationship between the relative change in urban area and the corresponding relative change in surface water has been investigated from the simulation results. The analysis of the three urbanization scenarios can give decision makers better understand for the future situation and assist them to advance towards achieving sustainable development planning for water resources system in the Gaza Strip.
文摘The rapid shrinkage of the surface area reflects the long-term deficit water budget of Qinghai Lake. Study of the yearly hydrology and meteorology in the lake catchment basin and the hydrologic factors as well as water budget led to the conclusion that evaporation exceeding the water input resulted in the drop of lake level, thai the obvious decrease of runoff to the lake and precipitation on the catchment accelerated the falling of lake level before 1987. and that increase of about 6.7% in rainfall on the whole basin will balance the lake’s water budget.
文摘In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.
文摘This paper presents the consumptive water use for freshwater pond aquaculture for semi-intensive carps farming practices. The consumptive use of water includes evaporation loss, seepage loss and water exchanges requirements. The water requirement has been estimated to be10.3 m3/Kg of fish production under present study for semi-intensive culture and with supplemental feeding. Out of which7.6 m3/Kg of fish production is system associated requirement. On an average the evaporation loss from the pond is1498.3 mm/year and seepage loss per year is about1182.60 mm/year. Seepage and water exchange losses recharge the ground water aquifers and if they are treated and recycled, the water use in aquaculture can be reduced significantly. A further reduction in fresh water use in pond aquaculture is possible through development of intensive and superintensive culture systems and aqua feeds.
文摘Water budgets terms, evapotranspiration (E), precipitation (P), runoff (N), moisture convergence (MC) and both surface as well as atmospheric residual terms have been computed with National Centers for Environmental Prediction (NCEP) (1948-2007) and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 (1958-2001) reanalysis data sets for Central Southwest Asia (CSWA).The domain of the study is 45° - 75°E & 25° - 40°N. Only the land area has been used in these calculations. It is noted in the comparison of both reanalysis data sets with Global Precipitation Climatology Centre (GPCC) that all three data sets record different precipitation before 1970. The maximum is from NCEP and the minimum with ERA-40. However, after 1970 all the data sets record almost the same precipitation. ERA-40 computes two phases of MC. Before 1975, the domain acts as a moisture source, whereas after 1975 it behaves as a moisture sink. The region CSWA is divided into six sub areas with rotational principle factor analysis and we distinguish them by different approached weather systems acting on each area. Finally, NCEP yearly precipitation is further divided into seasons;winter (November to April) and summer (May to October) and two phases have been noted. The variation in winter precipitation is more than summer during last 60-year analysis.
文摘The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Pondicherry is one such region with recent alluvium as the major formation. Since the study area forms a part of the coastal aquifer system this behaves as a fragile ecosystem. The present study has been attempted to calculate the extraction of water and to estimate the amount of recharge into this alluvial aquifer by using groundwater level variations. The monthly water level fluctuation was observed during the study period (2000-2002) in eighteen locations. The maximum rise in groundwater level observed during 2000 was considered as the initial water level for the study and the subsequent decline in water level (draw down) was monitored monthly until the rising trend was noted. This indicates the fall in water level due to extraction. Later keeping the deepest draw down as the initial value increasing water level trend was studied until there was a notice of decline in groundwater level. This indicates as the rise in water level due to recharge. This method of observation carried out at a single location was adopted for all eighteen locations. The spatial representation of these data for eighteen locations were carried out by using GIS and the area occupied by different groundwater level contours were calculated and the amount of water withdrawn/re- charged was estimated. The maximum recharge was noted in the central and the northern part of the study area when compared to the other regions. Similarly, the maximum discharge was noted in the northern and the southern part of the study area during the study period.
基金Supported by the National Key Research and Development Program of China (2016YFE0201900-02 and 2019YFC1510304)National Natural Science Foundation of China (41575037)。
文摘This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.
基金Supported by the National Natural Science Foundation of China(40830957and41075009)the China Meteorological Adminstration Special Public Welfare Research Fund(GYHY200806021)
文摘The imbalance of land-surface water budget was discovered in past studies, but there have been few further investigations on the relevant causes. To probe into the problem, annual variations of precipitation and land-surface evapotranspiration were analyzed by using the historical observation data from a compre- hensive land-surface observation base of LOPEX (Loess Plateau Experiment). A remarkable imbalance in the land-surface water budget was found, and the total annual imbalance reached 20.6%. Then, the impact factors related to additional water budget components and observational methods were studied. The total annual imbalance could be reduced to 3.8% by using a combination of compensated land-surface water bud- get components and the surface evapotranspiration values obtained from the large-scale weighing lysimeter rather than from the eddy correlation method.
基金This work was funded by the National Natural Science Foundation of China(41331174,41101415,41301366)Collaborative Innovation Center of Geospatial Technology,Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(JXS-EW-08)+2 种基金Special Fund by Surveying&Mapping and Geoinformation Research in the Public Interest(201512026),863 Program(2012AA12A304,2012AA12A306)Natural Science Foundation of Hubei Province of China(2015CFB331)Special funds of State Key Laboratory for equipment.Thanks to Jiangxi Provincial Institute of Water Science for providing partial data for this paper.
文摘The Soil and Water Assessment Tool(SWAT)model was used to assess the impacts of different land use scenarios on hydrological processes in the Fuhe watershed in Poyang Lake Basin,East China.A total of 12 model parameters were calibrated with observed monthly runoff data for 1982-1988 and validated for 1991-1998 for baseline conditions.The baseline test results of R2 and Nash-Sutcliffe model efficiency(NSE)values ranged between 0.88 and 0.94 across the calibration and validation periods,indicating that SWAT accurately replicated the Fuhe watershed streamflow.Several different land use scenarios were then simulated with the model,focusing on the impacts of land use change on the hydrology of the watershed.The results of hypothetical scenario simulations revealed that surface runoff declined while groundwater recharge and evapotranspiration(ET)increased,as forest land,agriculture land and/or grassland areas increased,as well as when paddy field and urban areas decreased.These results further showed that forest land has a higher capacity to conserve the water as compared to pasture land.The results of the real scenario simulations revealed that urbanization is the strongest contributor to changes in surface runoff,water yield,and ET.Urbanization can be considered as a potential major environmental stressor controlling hydrological components.
基金supported by the National Basic Research Program of China (2009CB421405)
文摘Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above normal after 2002;in recent decades there has been rapid warming of surface air,moistening and wind speed decrease.To investigate the influences of recent climatic changes on the water budget,this study simulates the surface water budget at CMA stations within and surrounding the source region during 1960-2006,using an improved land surface model.Results indicate that the spatial pattern of precipitation change is an important factor(except for precipitation amount and intensity) in determining the response of runoff to precipitation changes.Low runoff in the 1990s was consistent with precipitation amount and intensity.The recovery of precipitation after 2002 is mainly from increased precipitation in the dry area of the source region.Evaporation was mainly limited by water availability in this dry area,and thus most of the precipitation increase was evaporated.By contrast,energy availability was a more important influence on evaporation in the wet area.There was more evaporation in the wet area because of rapid warming,although precipitation amount partly decreased and partly increased,contributing to the reduction of runoff after 2002.This control on evaporation and its response,together with the modified spatial pattern of precipitation,produced a water budget unfavorable for runoff generation in the source region during recent years.
基金supported by the China Agriculture Research System (No. CARS-47)the Taishan Industrial Leader Talent Project of Shandong Province (No. LJNY 2015002)the Aoshan Innovation Project of Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02)
文摘In order to investigate the culture characteristics of two indoor intensive Litopenaeus vannamei farming modes, recirculating aquaculture system(RAS) and water exchange system(WES), this study was carried out to analyze the water quality and nitrogen budget including various forms of nitrogen, microorganism and chlorophyll-a. Nitrogen budget was calculated based on feed input, shrimp harvest, water quality and renewal rate, and collection of bottom mud. Input nitrogen retained in shrimp was 23.58% and 19.10% respectively for WES and RAS, and most of nitrogen waste retained in water and bottom mud. In addition, most of nitrogen in the water of WES was TAN(21.32%) and nitrite(15.30%), while in RAS was nitrate(25.97%), which means that more than 76% of ammonia and nitrite were removed. The effect of microalgae in RAS and WES was negligible. However, bacteria played a great role in the culture system considering the highest cultivable cultivable bacterial populations in RAS and WES were 1.03×10^(10) cfu mL^(-1) and 2.92×10~9 cfu mL^(-1), respectively. Meanwhile the proportion of bacteria in nitrogen budget was 29.61% and 24.61% in RAS and WES, respectively. RAS and WES could realize shrimp high stocking culture with water consuming rate of 1.25 m^3 per kg shrimp and 3.89 m^3 per kg shrimp, and power consuming rates of 3.60 kwh per kg shrimp and 2.51 kwh per kg shrimp, respectively. This study revealed the aquatic environment and nitrogen budget of intensive shrimp farming in detail, which provided the scientific basis for improving the industrial shrimp farming.
基金Second Scientific Expedition on the Qinghai-Tibet Plateau(2019QZKK020803)Strategic Priority Research Program of Chinese Academy of Sciences Pan-Third Pole Environment Study for a Green Silk Road(XDA2010030807)。
文摘The spatiotemporal variations of water vapor budget(Bt)and their relationships with local precipitation over the Tibetan Plateau(TP)are critical for understanding the characteristics of spatial distributions and evolutions of water resources over the TP.Based on a boundary of the TP,this paper explored the spatiotemporal characteristics of Bt over the TP using the European Centre for Medium-Range Weather Forecasts interim(ERA-Interim)reanalysis datasets.On the climatological mean,the TP is a water vapor sink throughout four seasons and the seasonal variation of Bt is closely associated with the water vapor budget at the southern boundary of the TP.The transient water vapor transport is quasimeridional in the mid-and high-latitude areas and plays a leading role in winter Bt but contributes little in other seasons.At the interannual timescale,the variation of Bt is mainly determined by anomalous water vapor transports at the western and southern boundaries.The Bay of Bengal,the North Arabian Sea,and mid-latitude West Asia are the main sources of excessive water vapor for a wetter TP.At the southern and western boundaries,the transient water vapor budget regulates one-third to four-fifths of Bt anomalies.Moreover,the variability of the TP Bt is closely associated with precipitation over the central-southern and southeastern parts of the TP in summer and winter,which is attributed to the combined effect of the stationary and transient water vapor budgets.Given the role of the transient water vapor transport,the linkage between the TP Bt and local precipitation is tighter.
基金Project supported by the National Key Basic Research and Development Project of China (Grant No.2012CB417201)the National Natural Sciences Foundation of China (Grant Nos.40930950 41075043,41275065,and 41075044)the 985 Program of Zhejiang University (Grant No.188020+193432602/215)
文摘The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds.