This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i...This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.展开更多
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t...New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.展开更多
The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation betwee...Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation between the C1 substitution position and some structural parameters was found. Consequently, the number of C1 substitution positions was taken as theoretical descriptors to establish two novel QSPR models for predicting lgKow and -lgSw of all PCDD congeners. The two models achieved in this work contain two variables (Na and Nβ), of which r = 0.9312, 0.9965 and SD = 0.27, 0.12 respectively, and t values are all large. The variation inflation factors (VIF) of variables in the two models herein are both less than 5.0, suggesting high accuracy of the lgKow and -lgSw predicting models, and the results of cross-validation test also show that the two models exhibit optimum stability and good predictive power. By comparison, the correlation and predictive ability of the present work are more advantageous than those obtained using semi-empirical AM1 and GC-RI methods.展开更多
Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0...Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.展开更多
Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, ...Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.展开更多
The method of singular coefficient of water inrush to achieve safety mining has limitation and one sidedness. Aiming at the problem above, large amounts of data about water inrush were collected. Then the data, includ...The method of singular coefficient of water inrush to achieve safety mining has limitation and one sidedness. Aiming at the problem above, large amounts of data about water inrush were collected. Then the data, including the maximum water inrush, water inrush coefficient and water abundance in aquifers of working face, were processed by the statistical analysis. The analysis results indicate that both water inrush coefficient and water abundance in aquifers should be taken into consideration when evaluating the danger of water inrush from coal seam floor. The prediction model of safe-mining evaluation grade was built by using the support vector machine, and the result shows that this model has high classification accuracy. A feasible classification system of water-inrush safety evaluation can be got by using the data visualization method which makes the implicit support vector machine models explicit.展开更多
By employing the information-reshufflingmethod that integrates census data, precipitation dataand inquiry data of water consumption, this paperdiscusses 5 (water consumption coefficient of people’sliving) in allusion...By employing the information-reshufflingmethod that integrates census data, precipitation dataand inquiry data of water consumption, this paperdiscusses 5 (water consumption coefficient of people’sliving) in allusion to different precipitation zones anddifferent periods of time. The study shows that 5-(water consumption coefficient of urban people’sliving), 5. (water consumption coefficient of ruralpeople’s living) and increase with time passing, andthe increasing extent of 5 is 1.84, 2.62, 2.84 and 2.68times respectively from the west to the east, whichresults from the total quantity of water resources andthe speed of urbanization. 5- and 5. of eachprecipitation zone increased with 5- increasing morequickly than 5., and the difference between the twoalso increased when time passed. In the past fifty years(1950-2000), the increasing extent of 5- was 1.71,2.96, 2.41 and 2.33 times respectively from the westto the east, in which 200-400mm precipitation zoneincreased more than others. Meanwhile the increasingextent of 5. is 1.55, 1.60, 1.53 and 1.64 timesrespectively from the west to the east with eachprecipitation zone increasing similarly. The change of5-is due to the speed of urbanization and the stabilityof water resources. This study provides basis forcalculating the water demand of people’s living andrevealing the impact of water demand of people’s livingon ecological drought in different zones.展开更多
A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that ...A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that 1-octanol/water partition coefficient of each quinolone increased with the increase of temperature. Based on the fluid phase equilibrium theory, the thermodynamic relationship of 1-octanol/water partition coefficient depending on the temperature was proposed, and the changes of enthalpy, entropy, and Gibbs free energy for quinolones partitioning in 1-octanol/water were determined, respectively. Quinolones molecules partitioning in 1-octanol/water was mainly an entropy driving process, during which the order degree of system decreased. The temperature effects of 1-octanol/water partition coefficient were investigated. The results show that its magnitude is the same as the values in the literature.展开更多
Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-para...Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-parameter (energy of the highest occupied molecular orbital (EHOMO), the most positive, atomic net charges of molecule (q^+) and molecular average polarizability (α)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, lgKow dependent equation calculated at the HF/6-311G^** level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods and used to predict lgKow of eight designed compounds. Upon comparison, the predictive abilities of our work are all more advantageous than those calculated from molecular property calculator program.展开更多
Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were...Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.展开更多
Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Q...Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.展开更多
With an increase in population and economic development,water withdrawals are close to or even exceed the amount of water available in many regions of the world.Modelling water withdrawals could help water planners im...With an increase in population and economic development,water withdrawals are close to or even exceed the amount of water available in many regions of the world.Modelling water withdrawals could help water planners improve the efficiency of water use,water resources allocation,and management in order to alleviate water crises.However,minimal information has been obtained on how water withdrawals have changed over space and time,especially on a regional or local scale.This research proposes a data-driven framework to help estimate county-level distribution of water withdrawals.Using this framework,spatial statistical methods are used to estimate water withdrawals for agricultural,industrial,and domestic purposes in the Huaihe River watershed in China for the period 1978–2018.Total water withdrawals were found to have more than doubled,from 292.55×10^(8)m^(3) in 1978 to 642.93×10^(8)m^(3) in 2009,and decreased to 602.63×10^(8)m^(3) in 2018.Agricultural water increased from 208.17×10^(8)m^(3) in 1978 to 435.80×10^(8)m^(3) in 2009 and decreased to 360.84×10^(8)m^(3) in 2018.Industrial and domestic water usage constantly increased throughout the 1978–2018 period.In 1978,industrial and domestic demands were 20.35×10^(8)m^(3) and 60.04×10^(8)m^(3),respectively,and up until 2018,the figures were 105.58×10^(8)m^(3) and 136.20×10^(8)m^(3).From a spatial distribution perspective,Moran’s I statistical results show that the total water withdrawal has significant spatial autocorrelation during 1978–2018.The overall trend was a gradual increase in 1978–2010 with withdrawal beginning to decline in 2010–2018.The results of Getis-Ord G_(i)^(*)statistical calculations showed spatially contiguous clusters of total water withdrawal in the Huaihe River watershed during1978–2010,and the spatial agglomeration weakened from 2010 to 2018.This study provides a data-driven framework for assessing water withdrawals to enable a deeper understanding of competing water use among economic sectors as well as water withdrawal modelled with proper data resource and method.展开更多
In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mecha...In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.展开更多
Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of t...Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of the municipal water use structure and its changes in the industrial sectors were analysed and discussed in terms of the indicators, such as direct water use coefficient, complete water use coefficient, water use multiplier and water reuse rate, by taking a year of 1990s as the base year. Some response strategies for water conservation have been studied and the corresponding recommendations were put forward. All of these have provided a basis for coordinating the relationship between aquatic environment and economic growth in this city, establishing a system for rational utilization of water resources, and promoting the implementation of a strategy for sustainable development.展开更多
With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inr...With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with di...Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.展开更多
Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relation...Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel quantitative structureproperty relationship (QSPR) model for predicting n-octanol/water partition coefficients (lgKow) of PCDFs. The new model of lgKow achieved in this work contains three variables: energy of the highest occupied molecular orbital (EHOMO), the most negative atomic partial charge (q^-) and average molecular polarizability (a), of which R^2= 0.9011 and SD = 0,17 with larger t values. In addition, the variation inflation factors (VIF) of variables in the present model are all less than 5.5, suggesting high accuracy of the lgKow model. And the results of cross-validation test (q^2 = 0.8688) and method validation also show this model exhibits optimum stability and better predictive power than semi-empirical method. At the same time, it is found that the aqueous solubility (-lgSw) has high relative correlation with constant volume molar heat capacity (Cv^0), of which R^2 = 0.9777 and SD = 0.22. Moreover, lgKow and -lgSw values of all PCDF congeners were predicted respectively.展开更多
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small wave...Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.展开更多
基金National Key Research and Development Program of China(2021YFC2902103)National Natural Science Foundation of China(51934001)Fundamental Research Funds for the Central Universities(2023JCCXLJ02).
文摘This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent.
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)(2003CB415002)China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimized calculations of 75 PCDDs and their parent DD were carded out at the B3LYP/6-31G* level by density functional theory (DFT) method. The structural parameters were obtained and significant correlation between the C1 substitution position and some structural parameters was found. Consequently, the number of C1 substitution positions was taken as theoretical descriptors to establish two novel QSPR models for predicting lgKow and -lgSw of all PCDD congeners. The two models achieved in this work contain two variables (Na and Nβ), of which r = 0.9312, 0.9965 and SD = 0.27, 0.12 respectively, and t values are all large. The variation inflation factors (VIF) of variables in the two models herein are both less than 5.0, suggesting high accuracy of the lgKow and -lgSw predicting models, and the results of cross-validation test also show that the two models exhibit optimum stability and good predictive power. By comparison, the correlation and predictive ability of the present work are more advantageous than those obtained using semi-empirical AM1 and GC-RI methods.
基金Supported by the Key Program of National Natural Science Foundation of China (No. 20737001)the National Science Foundation for Post-doctoral Scientists of China (No. 2003033486)
文摘Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.
基金the State Science Foundation of China (No. 20477018)
文摘Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.
基金Financial supports for this work, provided by National Natural Key Science Foundation of China (No. 50539080)Ministry of Education Research Fund for the doctoral program of China (No. 20133718110004)+2 种基金the Natural Science Key Foundation of Shandong Province of China (No. ZR2011EEZ002)the Technology Project Development Plan of Qingdao Economic and Technological Development Zone of China (No. 2013-1-62)SDUST Research Fund of China (No. 2012KYTD101)
文摘The method of singular coefficient of water inrush to achieve safety mining has limitation and one sidedness. Aiming at the problem above, large amounts of data about water inrush were collected. Then the data, including the maximum water inrush, water inrush coefficient and water abundance in aquifers of working face, were processed by the statistical analysis. The analysis results indicate that both water inrush coefficient and water abundance in aquifers should be taken into consideration when evaluating the danger of water inrush from coal seam floor. The prediction model of safe-mining evaluation grade was built by using the support vector machine, and the result shows that this model has high classification accuracy. A feasible classification system of water-inrush safety evaluation can be got by using the data visualization method which makes the implicit support vector machine models explicit.
文摘By employing the information-reshufflingmethod that integrates census data, precipitation dataand inquiry data of water consumption, this paperdiscusses 5 (water consumption coefficient of people’sliving) in allusion to different precipitation zones anddifferent periods of time. The study shows that 5-(water consumption coefficient of urban people’sliving), 5. (water consumption coefficient of ruralpeople’s living) and increase with time passing, andthe increasing extent of 5 is 1.84, 2.62, 2.84 and 2.68times respectively from the west to the east, whichresults from the total quantity of water resources andthe speed of urbanization. 5- and 5. of eachprecipitation zone increased with 5- increasing morequickly than 5., and the difference between the twoalso increased when time passed. In the past fifty years(1950-2000), the increasing extent of 5- was 1.71,2.96, 2.41 and 2.33 times respectively from the westto the east, in which 200-400mm precipitation zoneincreased more than others. Meanwhile the increasingextent of 5. is 1.55, 1.60, 1.53 and 1.64 timesrespectively from the west to the east with eachprecipitation zone increasing similarly. The change of5-is due to the speed of urbanization and the stabilityof water resources. This study provides basis forcalculating the water demand of people’s living andrevealing the impact of water demand of people’s livingon ecological drought in different zones.
基金Supported by the Natural Science Foundation of Henan Province,China(No.0611033400)
文摘A shake-flask method was used to determine 1-octanol/water partition coefficients of ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin and pipemidic acid from 293.15 K to 323.15 K. The results show that 1-octanol/water partition coefficient of each quinolone increased with the increase of temperature. Based on the fluid phase equilibrium theory, the thermodynamic relationship of 1-octanol/water partition coefficient depending on the temperature was proposed, and the changes of enthalpy, entropy, and Gibbs free energy for quinolones partitioning in 1-octanol/water were determined, respectively. Quinolones molecules partitioning in 1-octanol/water was mainly an entropy driving process, during which the order degree of system decreased. The temperature effects of 1-octanol/water partition coefficient were investigated. The results show that its magnitude is the same as the values in the literature.
基金the China Post Doctoral Research Fund (No. 2003033486)
文摘Structural parameters of 24 substituted naphthalin compounds were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of octanol/water partition coefficient (lgKow), three-parameter (energy of the highest occupied molecular orbital (EHOMO), the most positive, atomic net charges of molecule (q^+) and molecular average polarizability (α)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, lgKow dependent equation calculated at the HF/6-311G^** level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods and used to predict lgKow of eight designed compounds. Upon comparison, the predictive abilities of our work are all more advantageous than those calculated from molecular property calculator program.
基金Supported by the NNSF of China (No. 20737001)Program for Environment Protection in Jiangsu Province (201140)
文摘Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.
基金Under the auspices of Supporting Program of the 'Eleventh Five-year Plan' for Science and Technology Research of China (No. 2009BAC61B02)China Postdoctoral Science Foundation Funded Project (No. 20100470561)
文摘Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.
基金Under the auspices of the National Natural Science Foundation of China(No.71203200)the National Social Science Fund Project(No.20&ZD138)+1 种基金the National Science and Technology Platform Construction Project(No.2005DKA32300)the Major Research Projects of the Ministry of Education(No.16JJD770019)。
文摘With an increase in population and economic development,water withdrawals are close to or even exceed the amount of water available in many regions of the world.Modelling water withdrawals could help water planners improve the efficiency of water use,water resources allocation,and management in order to alleviate water crises.However,minimal information has been obtained on how water withdrawals have changed over space and time,especially on a regional or local scale.This research proposes a data-driven framework to help estimate county-level distribution of water withdrawals.Using this framework,spatial statistical methods are used to estimate water withdrawals for agricultural,industrial,and domestic purposes in the Huaihe River watershed in China for the period 1978–2018.Total water withdrawals were found to have more than doubled,from 292.55×10^(8)m^(3) in 1978 to 642.93×10^(8)m^(3) in 2009,and decreased to 602.63×10^(8)m^(3) in 2018.Agricultural water increased from 208.17×10^(8)m^(3) in 1978 to 435.80×10^(8)m^(3) in 2009 and decreased to 360.84×10^(8)m^(3) in 2018.Industrial and domestic water usage constantly increased throughout the 1978–2018 period.In 1978,industrial and domestic demands were 20.35×10^(8)m^(3) and 60.04×10^(8)m^(3),respectively,and up until 2018,the figures were 105.58×10^(8)m^(3) and 136.20×10^(8)m^(3).From a spatial distribution perspective,Moran’s I statistical results show that the total water withdrawal has significant spatial autocorrelation during 1978–2018.The overall trend was a gradual increase in 1978–2010 with withdrawal beginning to decline in 2010–2018.The results of Getis-Ord G_(i)^(*)statistical calculations showed spatially contiguous clusters of total water withdrawal in the Huaihe River watershed during1978–2010,and the spatial agglomeration weakened from 2010 to 2018.This study provides a data-driven framework for assessing water withdrawals to enable a deeper understanding of competing water use among economic sectors as well as water withdrawal modelled with proper data resource and method.
基金Projects(51878064, 51378072) supported by the National Natural Science Foundation of ChinaProjects(300102218408, 300102219108) supported by the Fundamental Research Funds for the Central Universities, China。
文摘In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.
文摘Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of the municipal water use structure and its changes in the industrial sectors were analysed and discussed in terms of the indicators, such as direct water use coefficient, complete water use coefficient, water use multiplier and water reuse rate, by taking a year of 1990s as the base year. Some response strategies for water conservation have been studied and the corresponding recommendations were put forward. All of these have provided a basis for coordinating the relationship between aquatic environment and economic growth in this city, establishing a system for rational utilization of water resources, and promoting the implementation of a strategy for sustainable development.
基金financial support from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(No.jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(No.YC2020-S451)。
文摘With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金funded by West Light Foundation of The Chinese Academy of Sciences,CASthe State Council Three Gorges Construction Committee Project of China
文摘Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimized calculation of dibenzofuran (DF) and 135 polychlorinated dibenzofurans (PCDFs) was carried out at the B3LYP/6-31G* level in GAUSSIAN 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel quantitative structureproperty relationship (QSPR) model for predicting n-octanol/water partition coefficients (lgKow) of PCDFs. The new model of lgKow achieved in this work contains three variables: energy of the highest occupied molecular orbital (EHOMO), the most negative atomic partial charge (q^-) and average molecular polarizability (a), of which R^2= 0.9011 and SD = 0,17 with larger t values. In addition, the variation inflation factors (VIF) of variables in the present model are all less than 5.5, suggesting high accuracy of the lgKow model. And the results of cross-validation test (q^2 = 0.8688) and method validation also show this model exhibits optimum stability and better predictive power than semi-empirical method. At the same time, it is found that the aqueous solubility (-lgSw) has high relative correlation with constant volume molar heat capacity (Cv^0), of which R^2 = 0.9777 and SD = 0.22. Moreover, lgKow and -lgSw values of all PCDF congeners were predicted respectively.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA112509the National Natural Science Fundation of China under contract No.41373112the Open Research Foundation from the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute under contract No.2012491311
文摘Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.