In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, ...In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac- ture under the same conditions. When floor fracture dip angle is less than 90% tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90% it occurs more easily on the right edge of the goal. The longer the advancing distance of working face is, the greater initial frac- ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result.展开更多
In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. T...In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. These seal the path of gas flow, thus the remaining gas in the pores mixes into water, and leads to gas-water interactive distribution in the fractured gas reservoir. These complicated fraetured systems usually generate some abnormal flowing phenomena such as the crestal well produces water while the downdip well in the same gas reservoir produces gas, or the same gas well produces water intermittently. It is very difficult to explain these phenomena using existing fracture models because of their simple handling macrofractures without considering nonlinear flowing in the macrofractures and the low permeability matrix. Therefore, a nonlinear combined-flowing multimedia simulation model was successfully developed in this paper by introducing the equations of macrofractures and considering nonlinear flow in the macrofractures and the matrix. This model was then applied to actual fractured bottom water gas fields. Sensitivity studies of gas produetion by water drainage in fractured gas reservoirs were completed and the effect of different water drainage intensity and ways on actual gas production using this model were calculated. This model has been extensively used to predict the production performance in various fractured gas fields and proven to be reliable.展开更多
基金provided by the National Natural Science Foundation of China (Nos. 51474008 and 41472235)the State Key Laboratory for Coal Resources and Safe Mining, China University of Mining &Technology (No. SKLCRSM13KFB01)+1 种基金the Scientific Research Foundation of Young Teacher of Anhui University of Science and Technology (No. QN201308)the State of College Students’ Innovation Training Project (No. 201210361006)
文摘In order to obtain the value of confined water progressive intrusion height of mining fracture floor, the analysis equation was deduced based on the fracture extension theory of the fracture mechanics. Further- more, the influence of some parameters (e.g., advancing distance of working face, water pressure, initial fracture length and its angle) on confined water progressive intrusion height were analyzed. The results indicate that tension-shearing fracture of floor is extended more easily than compression-shearing frac- ture under the same conditions. When floor fracture dip angle is less than 90% tension-shearing extension occurs more easily on the left edge of the goaf. If fracture dip angle is larger than 90% it occurs more easily on the right edge of the goal. The longer the advancing distance of working face is, the greater initial frac- ture length goes; or the larger water pressure is, the greater possibility of tension-shearing extension occurs. The confined water progressive intrusion height reaches the maximum on the edge of the goaf. Field in situ test is consistent with the theoretical analysis result.
基金Project supported by the Teaching and Research Award Programfor Outstanding Young Teachers for Higher Educa-tion Institutions of Ministry of Education of China and the Fund of Ph.D.Student Supervisor of Ministry of Education of China(Grant No :20040615004) .
文摘In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. These seal the path of gas flow, thus the remaining gas in the pores mixes into water, and leads to gas-water interactive distribution in the fractured gas reservoir. These complicated fraetured systems usually generate some abnormal flowing phenomena such as the crestal well produces water while the downdip well in the same gas reservoir produces gas, or the same gas well produces water intermittently. It is very difficult to explain these phenomena using existing fracture models because of their simple handling macrofractures without considering nonlinear flowing in the macrofractures and the low permeability matrix. Therefore, a nonlinear combined-flowing multimedia simulation model was successfully developed in this paper by introducing the equations of macrofractures and considering nonlinear flow in the macrofractures and the matrix. This model was then applied to actual fractured bottom water gas fields. Sensitivity studies of gas produetion by water drainage in fractured gas reservoirs were completed and the effect of different water drainage intensity and ways on actual gas production using this model were calculated. This model has been extensively used to predict the production performance in various fractured gas fields and proven to be reliable.