This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms...This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.展开更多
Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-...Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.展开更多
There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study th...There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.展开更多
文摘This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.
文摘Theoretically speaking, it is impossible to make the differential equation of motion uncoupled for the natural modes of a system in consideration of the attached water. The hydro-elastic structure is equal to the non-proportional damping system. In this paper a perturbation analysis method is put forward. The structure motion equation is strictly solved mathematically, and the non-proportional damping problem is transformed into a series of proportional damping ones in the superposition form. The paper also presents the calculation formula of the dynamic response of the structure being subjected to harmonic and arbitrary load. The convergence of the proposed method is also studied in this paper, and the corresponding convergence conditions are given. Finally, the proposed method is used to analyze the displacement response of a real offshore platform. The calculation results show that this method has the characteristics of high accuracy and fast convergence.
基金the National Natural Science Foundation of China (Grant No. 50379026).
文摘There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.