The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF)...The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.展开更多
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane system...Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.展开更多
Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure...Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.展开更多
Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol...Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, i...The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, it must be treated by the application of physicochemical or biological methods with the ability to separate high contents in sulfates, hydrogen sulphite and sulphides which have laxative, allergic and toxic properties in humans. Conventional methods require the supply of chemical compounds or the adequate control of different parameters such as pH, temperature, etc., and the constant maintenance within their reactors. For these reasons, the systems could have elevated operating costs and require additional steps to enable the treatment of its separated products and the final disposal of its residual waste generated. In this research, compound parabolic collectors are implemented for the use of solar energy radiation, UV-B type, in Solar Advanced Oxidation Processes in H2O2/O3/UVsolar homogeneous phase. Its application during the pre-treatment of four sulfur water wells from the region of Puebla, Mexico, demonstrated its ability to transform their sulfur compounds in sulfates of easy removal by a later stage of reverse osmosis, in an approximately 15 min treatment time process.展开更多
The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and...The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and distribution.We used Low-field nuclear magnetic resonance(LF-NMR)technology to identify three water fractions with different transverse relaxation times(T2)values:bound water T21(<10 ms),intermediate immobilized water T22(10-100 ms),and the slowest component free water T23(>10 ms).During the opening process,T23increased at stages 2 and 3 and then decreased,T22 decreased slowly,and T21 remained unchanged.Free water values were consistently higher than bound water and immobilized water and reached their maximum from stage 2 until stage 4,when the petals were extended and began to wilt.The vascular bundles responsible for transporting water had higher water content,as detected by proton density-weighted magnetic resonance imaging(MRI).Bound water and free water with NS pretreatments in bracts were initially lower but then two days later the signal amplitude of each water state exceeded those of the control,indicating that the treatment enhanced the water-holding capacity over time.Furthermore,NS pretreatments reduced the free water mobility of the cut flowers and inhibited stem decay.Additionally,we found that NS can enter the stem and are primarily transported upward along the xylem with water using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)technology.Overall,our findings indicate that NS pretreatment reduces free water in gladiolus cut flowers,enhancing their water retention and prolonging their vase life.展开更多
The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this stu...The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.展开更多
Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the nationa...Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.展开更多
The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could h...The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could help improve aquatic environment management in the YREB and our understanding of the causes and effects of water quality variations in other large river basins.In this study,river water quality,factors affecting water quality,and management strategies,and correlations between water quality indices and socioeconomic indicators in the YREB during the 13th Five-Year Plan period(2016-2020)were assessed.The single-factor evaluation method,constant price for GDP,and correlation analyses were adopted.The results showed that:1)water quality in the YREB improved during the 13th Five-Year Plan period.The number of aquatic environment sections meeting GradeⅠ-Ⅲwater quality standards increased by 13.1%and the number below Grade V decreased by 2.9%.2)The values of 12 indicators in the YREB exceeded relevant standards.The indicators with highest concentreation were the total phosphorus,chemical oxygen demand,ammonia nitrogen,and permanganate index,which were relatively high in downstream regions in Anhui Province,Jiangsu Province,and Shanghai Municipality.3)Ammonia nitrogen,chemical oxygen demand,and total phosphorus emissions per unit area and water extraction per unit area are relatively high in the three downstream regions mentioned above.4)Increased domestic sewage discharges have increased total wastewater discharges in the YREB.5)River water quality in the YREB strongly correlated with population,economic,and water resource indices and less strongly correlated with government investment,agriculture,meteorology,energy,and forestry indices.This confirmed the need to decrease wastewater discharges and non-point-source pollutant emissions.The aquatic environment could be improved by taking reasonable measures to control population growth,adjusting the industrial structure to accelerate industrial transformation and increase the proportion of tertiary industries,and investing in technological innovations to protect the environment.展开更多
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer...Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.展开更多
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3...Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.展开更多
Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due t...Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.展开更多
To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l...To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.展开更多
[ Objective] The research aimed to study pre-treatment effect of the domestic sewage by water-dropping aeration zeolite bed technology. [ Method] By water-dropping aeration manner, we conducted sewage reoxygenation. Z...[ Objective] The research aimed to study pre-treatment effect of the domestic sewage by water-dropping aeration zeolite bed technology. [ Method] By water-dropping aeration manner, we conducted sewage reoxygenation. Zeolite was used to replace traditional contact oxidization fill- er. We inspected oxygenation effect of the water-dropping aeration manner and removal efficiency of the pollutant in sewage after biological contact oxidation. [ Result] Under the experimental condition with water-dropping heights of 0.30, 0.45 and 0.60 m, average added values of the dissolved oxygen for raw water were respectively 2.4, 3.6 and 4.2 rag/l_ after water-dropping aeration. Under the situation with average HRT of 2 h, when COD, TN and TP of the influent were respectively 309.0 -464.0, 33.3 -95.0 and 4.0 -7.5 mg/L, their corresponding average removal rates were 47.25%, 46.39% and 40.75%. [ Conclusion] The research conducted useful attempt for high-efficiency and low-cost treatment of the domestic sewaqe in rural area.展开更多
Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chrom...Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chromate plus HF pre-treatment. The electrochemical results show that the chrome-free coatings plus electroless Ni-P coating on the magnesium alloy has the lowest corrosion current density and most positive corrosion potential compared with chromate plus electroless Ni-P coating on the magnesium alloy. These proposed pre-treatment layers on the substrate reduce the corrosion of magnesium during plating process, and reduce the potential difference between the matrix and the second phase. Thus, an electroless Ni-P coating with fine crystalline and dense structure was obtained, with preferential phosphorus content, low porosity, good corrosion-resistance and strengthened adhesion than the chromate plus electroless Ni-P.展开更多
AIM: To investigate the effects of selenium in rat retinal ischemia reperfusion(IR) model and compare pretreatment and post-treatment use.METHODS: Selenium pre-treatment group(n =8) was treated with intraperitoneal(i....AIM: To investigate the effects of selenium in rat retinal ischemia reperfusion(IR) model and compare pretreatment and post-treatment use.METHODS: Selenium pre-treatment group(n =8) was treated with intraperitoneal(i.p.) selenium 0.5 mg/kg for7 d and terminated 24 h after the IR injury. Selenium posttreatment group( n = 8) was treated with i. p. selenium0.5 mg/kg for 7d after the IR injury with termination at the end of the 7d period. Sham group(n =8) received i.p.saline injections identical to the selenium volume for 7d with termination 24 h after the IR injury. Control group(n =8) received no intervention. Main outcome measures were retina superoxide dismutase(SOD), glutathione(GSH),total antioxidant status(TAS), malondialdehyde(MDA),DNA fragmentation levels, and immunohistological apoptosis evaluation.RESULTS: Compared to the Sham group, selenium pre-treatment had a statistical difference in all parameters except SOD. Post-treatment selenium also resulted in statistical differences in all parameters except the MDA levels. When comparing selenium groups, the pre-treatment selenium group had a statistically higher success in reduction of markers of cell damage such as MDA and DNA fragmentation. In contrast, the post-selenium treatment group had resulted in statisticallyhigher levels of GSH. Histologically both selenium groups succeeded to limit retinal thickening and apoptosis. Pre-treatment use was statistically more successful in decreasing apoptosis in ganglion cell layer compared to post-treatment use.CONCLUSION: Selenium was successful in retinal protection in IR injuries. Pre-treatment efficacy was superior in terms of prevention of tissue damage and apoptosis.展开更多
Microwave,as a new heat treatment technology,has the characteristics of uniform and fast heating speed.It is an energy-saving technology known for improving oilseed product quality.Its efficiency mainly depends on the...Microwave,as a new heat treatment technology,has the characteristics of uniform and fast heating speed.It is an energy-saving technology known for improving oilseed product quality.Its efficiency mainly depends on the roasting power and time.However,the production of high-quality peanut butter using short-time roasting con-ditions are limited.Herein,we determined an appropriate microwave roasting power and time for peanuts and evaluated its impacts on the quality of peanut butter.Different roasting powers(400 W,800 W and 1200 W)and times(4,4.5,5,and 5.5 min)were preliminarily tested.Among them,800 W at 5 min was the most suitable.The roasting efficiency was further evaluated using color,sensory,bioactive compounds,storage stability,and safety risk factors of peanut butter produced from four peanut cultivars(Silihong,Baisha-1016,Yuanza-9102,and Yuhua-9414).The pre-treated butter obtained from three cultivars(Silihong,Yuanza-9102,and Yuhua-9414)with moisture content between 5%and 7.2%had a similar sensory score(6-7)as the commercial on a 9-point hedonic scale compare to the other.The color of the pre-treated peanut butter varies statistically with the commercial but remained in the recommended range of Hunter L*values of 51-52,respectively,for high initial moisture peanut cultivars.The total polyphenol(35.20-31.59±0.59μmol GAE/g)and tocopherol(19.05±0.35 mg/100 g)content in the butter obtained from three cultivars(Yuahua-9102,Yuhua,and Baisha-1016)and Silihong respectively,were significantly(P<0.05)higher than those in the commercial butter.The induction times of all pre-treated butter(19.80±0.99-7.84±0.07 h)were significantly(P<0.05)longer during storage at accelerated temperature than commercial samples.In addition,no benzo[a]pyrene was found in the pre-treated samples.Collectively,the microwave pretreated peanut butter was superior to the commercial one.These findings provided data support and a reference basis to promote microwave use for peanut butter production.展开更多
BACKGROUND During cirrhosis,the liver is impaired and unable to synthesize and clear thrombopoietin properly.At the same time,the spleen assumes the function of hemofiltration and storage due to liver dysfunction,resu...BACKGROUND During cirrhosis,the liver is impaired and unable to synthesize and clear thrombopoietin properly.At the same time,the spleen assumes the function of hemofiltration and storage due to liver dysfunction,resulting in hypersplenism and excessive removal of platelets in the spleen,further reducing platelet count.When liver function is decompensated in cirrhotic patients,the decrease of thrombopoietin(TPO)synthesis is the main reason for the decrease of new platelet production.This change of TPO leads to thrombocytopenia and bleeding tendency in cirrhotic patients with hypersplenism.AIM To investigate the clinical efficacy of recombinant human TPO(rhTPO)in the treatment of perioperative thrombocytopenia during liver transplantation in cirrhotic mice with hypersplenism.METHODS C57BL/6J mice and TPO receptor-deficient mice were used to establish models of cirrhosis with hypersplenism.Subsequently,these mice underwent orthotopic liver transplantation(OLT).The mice in the experimental group were given rhTPO treatment for 3 consecutive days before surgery and 5 consecutive days after surgery,while the mice in the control group received the same dose of saline at the same frequency.Differences in liver function and platelet counts were determined between the experimental and control groups.Enzyme-linked immunosorbent assay was used to assess the expression of TPO and TPO receptor(c-Mpl)in the blood.RESULTS Preoperative administration of rhTPO significantly improved peri-OLT thrombocytopenia in mice with cirrhosis and hypersplenism.Blocking the expression of TPO receptors exacerbated peri-OLT thrombocytopenia.The concentration of TPO decreased while the concentration of c-Mpl increased in compensation in the mouse model of cirrhosis with hypersplenism.TPO pre-treatment significantly increased the postoperative TPO concentration in mice,which in turn led to a decrease in the c-Mpl concentration.TPO pre-treatment also significantly enhanced the Janus kinase(Jak)/signal transducers and activators of transcription pathway protein expressions in bone marrow stem cells of the C57BL/6J mice.Moreover,the administration of TPO,both before and after surgery,regulated the levels of biochemical indicators,such as alanine aminotransferase,alkaline phosphatase,and aspartate aminotransferase in the C57BL/6J mice.CONCLUSION Pre-treatment with TPO not only exhibited therapeutic effects on perioperative thrombocytopenia in the mice with cirrhosis and hypersplenism,who underwent liver transplantation but also significantly enhanced the perioperative liver function.展开更多
基金supported by the National Natural Science Foundation of China (No. 51778208)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07201002)the Qing Lan Project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
基金Supported by the National High Technology Research and Development of China (2007AA030303)
文摘Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.
基金Funded by the National Natural Science Foundation of China(No.20806051)the Key Laboratory of Education Ministry for Solid Waste Management and Environment Safety(No.SWMES-2010-07)the Science and Technology Project of Housing and Urban-Rural Ministry(No.2010-K4-2)
文摘Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.
基金the sponsor CSIR (Council of Scientific and Industrial Research), New Delhi for their financial grant to carry out the present research work
文摘Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘The sulfurous water deposit exploitation in volcanic, swamp, or wetland regions, represents an alternative option for potable water supply in cities and communities around the world. However, before its consumption, it must be treated by the application of physicochemical or biological methods with the ability to separate high contents in sulfates, hydrogen sulphite and sulphides which have laxative, allergic and toxic properties in humans. Conventional methods require the supply of chemical compounds or the adequate control of different parameters such as pH, temperature, etc., and the constant maintenance within their reactors. For these reasons, the systems could have elevated operating costs and require additional steps to enable the treatment of its separated products and the final disposal of its residual waste generated. In this research, compound parabolic collectors are implemented for the use of solar energy radiation, UV-B type, in Solar Advanced Oxidation Processes in H2O2/O3/UVsolar homogeneous phase. Its application during the pre-treatment of four sulfur water wells from the region of Puebla, Mexico, demonstrated its ability to transform their sulfur compounds in sulfates of easy removal by a later stage of reverse osmosis, in an approximately 15 min treatment time process.
基金financially supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2023A1515030023,2022B0202110003,2021TQ06N115,2020B121201008)the Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2023PY-JG025)。
文摘The water content of cut flowers is a significant factor in their post-harvest quality.In this study,we examine the efficacy of silver nanoparticles(NS)on the longevity of cut gladiolus,with a focus on water state and distribution.We used Low-field nuclear magnetic resonance(LF-NMR)technology to identify three water fractions with different transverse relaxation times(T2)values:bound water T21(<10 ms),intermediate immobilized water T22(10-100 ms),and the slowest component free water T23(>10 ms).During the opening process,T23increased at stages 2 and 3 and then decreased,T22 decreased slowly,and T21 remained unchanged.Free water values were consistently higher than bound water and immobilized water and reached their maximum from stage 2 until stage 4,when the petals were extended and began to wilt.The vascular bundles responsible for transporting water had higher water content,as detected by proton density-weighted magnetic resonance imaging(MRI).Bound water and free water with NS pretreatments in bracts were initially lower but then two days later the signal amplitude of each water state exceeded those of the control,indicating that the treatment enhanced the water-holding capacity over time.Furthermore,NS pretreatments reduced the free water mobility of the cut flowers and inhibited stem decay.Additionally,we found that NS can enter the stem and are primarily transported upward along the xylem with water using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)technology.Overall,our findings indicate that NS pretreatment reduces free water in gladiolus cut flowers,enhancing their water retention and prolonging their vase life.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022508,12074394,and 22125604)Shanghai Supercomputer Center of ChinaShanghai Snowlake Technology Co.Ltd.
文摘The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
基金Under the auspices of National Natural Science Foundation of China(No.42371315,41901213)Natural Science Foundation of Hubei Province(No.2020CFB856)Project of Changjiang Survey,Planning,Design and Research Co.,Ltd(No.CX2022Z23)。
文摘Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.
基金National Key Research and Development Program of China(No.2022YFC3204404,2023YFF1303705)National Natural Science Foundation of China(No.U2243206)。
文摘The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could help improve aquatic environment management in the YREB and our understanding of the causes and effects of water quality variations in other large river basins.In this study,river water quality,factors affecting water quality,and management strategies,and correlations between water quality indices and socioeconomic indicators in the YREB during the 13th Five-Year Plan period(2016-2020)were assessed.The single-factor evaluation method,constant price for GDP,and correlation analyses were adopted.The results showed that:1)water quality in the YREB improved during the 13th Five-Year Plan period.The number of aquatic environment sections meeting GradeⅠ-Ⅲwater quality standards increased by 13.1%and the number below Grade V decreased by 2.9%.2)The values of 12 indicators in the YREB exceeded relevant standards.The indicators with highest concentreation were the total phosphorus,chemical oxygen demand,ammonia nitrogen,and permanganate index,which were relatively high in downstream regions in Anhui Province,Jiangsu Province,and Shanghai Municipality.3)Ammonia nitrogen,chemical oxygen demand,and total phosphorus emissions per unit area and water extraction per unit area are relatively high in the three downstream regions mentioned above.4)Increased domestic sewage discharges have increased total wastewater discharges in the YREB.5)River water quality in the YREB strongly correlated with population,economic,and water resource indices and less strongly correlated with government investment,agriculture,meteorology,energy,and forestry indices.This confirmed the need to decrease wastewater discharges and non-point-source pollutant emissions.The aquatic environment could be improved by taking reasonable measures to control population growth,adjusting the industrial structure to accelerate industrial transformation and increase the proportion of tertiary industries,and investing in technological innovations to protect the environment.
基金supported by the China Scholarship Council(CSC,Grant No.202108050072)JSPS KAKENHI(Grant No.JP19KK0121)。
文摘Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.
文摘Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.
基金This work was supported by the National Key Research and Development Program of China(2021YFE0107100)Guangxi Key Research and Development Program(GuikeAB22035004)Guangxi Science and Technology Base and Talent Special Project(Guike AD20297090).
文摘Research on the ecohydrological processes of terrestrial plants is a frontier field comprising ecology,hydrology and global change research,yielding the key theoretical foundations of ecohydrology.In karst areas,due to its unique geological background,the karst landscape is strongly developed,with high bedrock exposure,high permeability,fragmented soils,shallow soils,and high spatial heterogeneity,resulting in very limited water storage for plant uptake and growth in rock fissures and shallow soils.Therefore,water conditions are an important ecological factor influencing plant growth.To comprehensively understand the current progress and development trends in plant water use research focusing on karst areas,this paper uses the VOSviewer software to analyze the literature on plant water use in karst areas between 1984 and 2022.The results showed that:(1)Research on plant water use in karst areas has developed rapidly worldwide,and the number of relevant studies in the literature have increased year by year,which together means that it is attracting more and more attention.(2)The investigation of plant water sources,geological background of karst areas,seasonal arid tropical climates,the relationship betweenδ13C values and plant water use efficiency,karst plant water use in karst savannas and subtropical areas,and ecosystems under climate change yields the knowledge base in this field.(3)Most studies in this area focus on the division of water sources of plants in karst areas,the methods of studying the water use sources of plants,and the water use strategies and efficiency of plants.(4)Future research will focus on how plant water use in karst areas is influenced by Earth’s critical zones,climate change,and ecohydrological separation.These studies will provide a key scientific basis for guiding ecological restoration and promoting sustainable development in karst areas.
文摘To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.
基金Supported by Science and Technology Key Special Item of the National Water Body Pollution Control and Treatment, China(2010BAC68B02)
文摘[ Objective] The research aimed to study pre-treatment effect of the domestic sewage by water-dropping aeration zeolite bed technology. [ Method] By water-dropping aeration manner, we conducted sewage reoxygenation. Zeolite was used to replace traditional contact oxidization fill- er. We inspected oxygenation effect of the water-dropping aeration manner and removal efficiency of the pollutant in sewage after biological contact oxidation. [ Result] Under the experimental condition with water-dropping heights of 0.30, 0.45 and 0.60 m, average added values of the dissolved oxygen for raw water were respectively 2.4, 3.6 and 4.2 rag/l_ after water-dropping aeration. Under the situation with average HRT of 2 h, when COD, TN and TP of the influent were respectively 309.0 -464.0, 33.3 -95.0 and 4.0 -7.5 mg/L, their corresponding average removal rates were 47.25%, 46.39% and 40.75%. [ Conclusion] The research conducted useful attempt for high-efficiency and low-cost treatment of the domestic sewaqe in rural area.
基金Project(50871046)supported by the National Natural Science Foundation of ChinaProject(2010CB631001)supported by the National Basic Research Program of China+1 种基金Project supported by the Program for Changjiang Scholars and Innovative Research Team inUniversity,ChinaIndo-China cultural exchange scholarship program by the Ministry of Human Resource Department(MHRD,India)and Ministry of Education(MOE,China)
文摘Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chromate plus HF pre-treatment. The electrochemical results show that the chrome-free coatings plus electroless Ni-P coating on the magnesium alloy has the lowest corrosion current density and most positive corrosion potential compared with chromate plus electroless Ni-P coating on the magnesium alloy. These proposed pre-treatment layers on the substrate reduce the corrosion of magnesium during plating process, and reduce the potential difference between the matrix and the second phase. Thus, an electroless Ni-P coating with fine crystalline and dense structure was obtained, with preferential phosphorus content, low porosity, good corrosion-resistance and strengthened adhesion than the chromate plus electroless Ni-P.
文摘AIM: To investigate the effects of selenium in rat retinal ischemia reperfusion(IR) model and compare pretreatment and post-treatment use.METHODS: Selenium pre-treatment group(n =8) was treated with intraperitoneal(i.p.) selenium 0.5 mg/kg for7 d and terminated 24 h after the IR injury. Selenium posttreatment group( n = 8) was treated with i. p. selenium0.5 mg/kg for 7d after the IR injury with termination at the end of the 7d period. Sham group(n =8) received i.p.saline injections identical to the selenium volume for 7d with termination 24 h after the IR injury. Control group(n =8) received no intervention. Main outcome measures were retina superoxide dismutase(SOD), glutathione(GSH),total antioxidant status(TAS), malondialdehyde(MDA),DNA fragmentation levels, and immunohistological apoptosis evaluation.RESULTS: Compared to the Sham group, selenium pre-treatment had a statistical difference in all parameters except SOD. Post-treatment selenium also resulted in statistical differences in all parameters except the MDA levels. When comparing selenium groups, the pre-treatment selenium group had a statistically higher success in reduction of markers of cell damage such as MDA and DNA fragmentation. In contrast, the post-selenium treatment group had resulted in statisticallyhigher levels of GSH. Histologically both selenium groups succeeded to limit retinal thickening and apoptosis. Pre-treatment use was statistically more successful in decreasing apoptosis in ganglion cell layer compared to post-treatment use.CONCLUSION: Selenium was successful in retinal protection in IR injuries. Pre-treatment efficacy was superior in terms of prevention of tissue damage and apoptosis.
基金Key Research Projects of Hubei Province(2020BBA045)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)。
文摘Microwave,as a new heat treatment technology,has the characteristics of uniform and fast heating speed.It is an energy-saving technology known for improving oilseed product quality.Its efficiency mainly depends on the roasting power and time.However,the production of high-quality peanut butter using short-time roasting con-ditions are limited.Herein,we determined an appropriate microwave roasting power and time for peanuts and evaluated its impacts on the quality of peanut butter.Different roasting powers(400 W,800 W and 1200 W)and times(4,4.5,5,and 5.5 min)were preliminarily tested.Among them,800 W at 5 min was the most suitable.The roasting efficiency was further evaluated using color,sensory,bioactive compounds,storage stability,and safety risk factors of peanut butter produced from four peanut cultivars(Silihong,Baisha-1016,Yuanza-9102,and Yuhua-9414).The pre-treated butter obtained from three cultivars(Silihong,Yuanza-9102,and Yuhua-9414)with moisture content between 5%and 7.2%had a similar sensory score(6-7)as the commercial on a 9-point hedonic scale compare to the other.The color of the pre-treated peanut butter varies statistically with the commercial but remained in the recommended range of Hunter L*values of 51-52,respectively,for high initial moisture peanut cultivars.The total polyphenol(35.20-31.59±0.59μmol GAE/g)and tocopherol(19.05±0.35 mg/100 g)content in the butter obtained from three cultivars(Yuahua-9102,Yuhua,and Baisha-1016)and Silihong respectively,were significantly(P<0.05)higher than those in the commercial butter.The induction times of all pre-treated butter(19.80±0.99-7.84±0.07 h)were significantly(P<0.05)longer during storage at accelerated temperature than commercial samples.In addition,no benzo[a]pyrene was found in the pre-treated samples.Collectively,the microwave pretreated peanut butter was superior to the commercial one.These findings provided data support and a reference basis to promote microwave use for peanut butter production.
基金All procedures involving animals were reviewed and approved by the Tianjin Tiancheng New Drug Evaluation Co.,Ltd(Approval No.2023041701).
文摘BACKGROUND During cirrhosis,the liver is impaired and unable to synthesize and clear thrombopoietin properly.At the same time,the spleen assumes the function of hemofiltration and storage due to liver dysfunction,resulting in hypersplenism and excessive removal of platelets in the spleen,further reducing platelet count.When liver function is decompensated in cirrhotic patients,the decrease of thrombopoietin(TPO)synthesis is the main reason for the decrease of new platelet production.This change of TPO leads to thrombocytopenia and bleeding tendency in cirrhotic patients with hypersplenism.AIM To investigate the clinical efficacy of recombinant human TPO(rhTPO)in the treatment of perioperative thrombocytopenia during liver transplantation in cirrhotic mice with hypersplenism.METHODS C57BL/6J mice and TPO receptor-deficient mice were used to establish models of cirrhosis with hypersplenism.Subsequently,these mice underwent orthotopic liver transplantation(OLT).The mice in the experimental group were given rhTPO treatment for 3 consecutive days before surgery and 5 consecutive days after surgery,while the mice in the control group received the same dose of saline at the same frequency.Differences in liver function and platelet counts were determined between the experimental and control groups.Enzyme-linked immunosorbent assay was used to assess the expression of TPO and TPO receptor(c-Mpl)in the blood.RESULTS Preoperative administration of rhTPO significantly improved peri-OLT thrombocytopenia in mice with cirrhosis and hypersplenism.Blocking the expression of TPO receptors exacerbated peri-OLT thrombocytopenia.The concentration of TPO decreased while the concentration of c-Mpl increased in compensation in the mouse model of cirrhosis with hypersplenism.TPO pre-treatment significantly increased the postoperative TPO concentration in mice,which in turn led to a decrease in the c-Mpl concentration.TPO pre-treatment also significantly enhanced the Janus kinase(Jak)/signal transducers and activators of transcription pathway protein expressions in bone marrow stem cells of the C57BL/6J mice.Moreover,the administration of TPO,both before and after surgery,regulated the levels of biochemical indicators,such as alanine aminotransferase,alkaline phosphatase,and aspartate aminotransferase in the C57BL/6J mice.CONCLUSION Pre-treatment with TPO not only exhibited therapeutic effects on perioperative thrombocytopenia in the mice with cirrhosis and hypersplenism,who underwent liver transplantation but also significantly enhanced the perioperative liver function.