The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of...The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.展开更多
This paper describes research undertaken by the authors to develop an integrated measurement and modeling methodology for water quality management of estuaries. The approach developed utilizes modeling and measurement...This paper describes research undertaken by the authors to develop an integrated measurement and modeling methodology for water quality management of estuaries. The approach developed utilizes modeling and measurement results in a synergistic manner. Modeling results were initially used to inform the field campaign of appropriate sampling locations and times, and field data were used to develop accurate models. Remote sensing techniques were used to capture data for both model development and model validation. Field surveys were undertaken to provide model initial conditions through data assimilation and determine nutrient fluxes into the model domain. From field data, salinity re- lationships were developed with various water quality parameters, and relationships between chlorophyll a concentrations, transparency, and light attenuation were also developed. These relationships proved to be invaluable in model development, particularly in modeling the growth and decay of chlorophyll a. Cork Harbour, an estuary that regularly experiences summer algal blooms due to anthropogenic sources of nutrients, was used as a case study to develop the methodology. The integration of remote sensing, conventional fieldwork, and modeling is one of the novel aspects of this research and the approach developed has widespread applicability.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
Taking the water ecosystem of Small Xingkai Lake as research object,through the survey and analysis of aquatic organism indicators,this paper established an ecosystem integrity evaluation system with the biological in...Taking the water ecosystem of Small Xingkai Lake as research object,through the survey and analysis of aquatic organism indicators,this paper established an ecosystem integrity evaluation system with the biological integrity as the criterion layer. Using the index of biological integrity and comprehensive health index,it evaluated the health status of water ecosystem of Small Xingkai Lake.展开更多
Visual satisfaction of the tourists with a water body is strongly influenced by water clarity, which is in turn influenced by a number of water quality parameters. Visual satisfaction thus stands to benefit from havin...Visual satisfaction of the tourists with a water body is strongly influenced by water clarity, which is in turn influenced by a number of water quality parameters. Visual satisfaction thus stands to benefit from having a water quality management tool that results in better water clarity. A Clarity Suitability Index of Water Quality (CSIWQ), derived from clarity suitability curves of selected water quality parameters, can allow estimation of optimal values for these parameters, while ensuring high visual satisfaction among tourists. The present study used sampling and survey methodologies to investigate water clarity and quality at five tourism fishing ports;simultaneously, tourists’ visual satisfaction with a water body was assessed through a questionnaire based on their perceptions. The relationship between tourists’ visual satisfaction and water clarity was found to be positive and strong, with water clarity having predictive power of 74.2%. The study showed that DO, BOD, TP, and SS were the most critical parameters for water clarity. A continued product approach of CSIWQ was found to be most appropriate for describing the relationship between water clarity and these four parameters. This enabled a CSIWQ Index value to be calculated. With a CSIWQ value of 0.6, water clarity would be more than 2.08 m, and tourists would experience very high satisfaction. CSI curves showed that DO would preferably be 9.0 mg/L, and BOD, TP, and SS less than 0.5 mg/L, 0.12 mg/L, and 45.0 mg/L, respectively. The model thus produced valuable insights for assessing and improving water quality and ensuring high levels of visual satisfaction among tourists in tourism fishing ports. This model identified only four parameters but could be improved by ensuring that other water quality parameters were included, to encourage an increase in the number of tourists and to include monitoring of more pollutant sources.展开更多
Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to det...Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the attainment of the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized.展开更多
This study assessed the fish production, culture facilities, operations, water resource management and profitability of fish farming in Katsina State, Nigeria, with a view of understanding the status of aquaculture de...This study assessed the fish production, culture facilities, operations, water resource management and profitability of fish farming in Katsina State, Nigeria, with a view of understanding the status of aquaculture development in Katsina State. Data were collected using structured questionnaire administered to 35 out of the active 42 farms in Katsina State at the period and the data obtained were analyzed using descriptive statistics and linear regression. Among the respondents, 37.1% used concrete tank alone and another 37.2% used concrete tank with other types of culture facilities, 57.1% practised mono-culture techniques and 77.1% used stagnant renewal system as culture system. Management of water quality was done by majority(82.9%) with mere visual evaluation, while 68.6% did not use any forms of water treatment. Most of the farms(80%) depended on imported feed for feeding their fish and gross profits of ■7.29±1.81 and ■157.83±118.08 were obtained on fingerlings and adult fish, respectively. The tested explanatory variables were responsible for 45.4% change in profitability and profitability was found to be dependent on feeding cost(t=–3.38 and p=0.002) and size of fish at harvest(t=2.70 and p=0.011). The research findings established that fish farming in Katsina State was under developed.展开更多
PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical o...PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical ones such as multiple lineal regression. In this work they were used to model four water quality parameters at the Amadorio Reservoir (Alicante, Spain), namely: water temperature, dissolved oxygen, pH and conductivity. The main purpose of this study was to predict the future quality of the water and, thus improve its management. Raw data correspond to daily values of mean wind speed, mean wind direction, maximum wind speed, mean, minimum and maximum air temperature, number of hours below 7 ~C, relative humidity, global solar radiation, total precipitation, evapotranspiration, exploitation volume, inflow, outflow, filtration, depth and Julian day. Two years were considered (2004-2005) to get the calibration (186 days, 4,401 registrations) and validation (185 days, 4,573 registrations) datasets. Models were developed using either all the variables or a reduced subset; furthermore, PLSR yielded the best results.展开更多
Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle dur...Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle during life activities. Photochemical reactions are pivotal for LMWOAs' origination and play a large role in determining their diversity and their ultimate fate. Within the long time that organic matter is preserved in sediments, it can be decomposed and converted to release organic and inorganic pollutants as well as C, N, and P nutrients, which are of potential ecological risk in causing secondary pollution to lake water. The sediment pool is a comprehensive and complex compartment closely associated with overlying water by various biochemical processes, during which LMWOAs play critical roles to transport and transform elements. This article elucidates geochemical behaviors of LMWOAs in the surface environment in details, taking natural water, soil, and aerosol as examples, focusing on reviewing research developments on sources and characteristics, migration and mineralization of LMWOAs and relevant environmental effects. Simultaneously, this review article depicts the categories and contents of LMWOAs or their contribution to DOC in environmental media, and evaluates their importance during organic matter early diagenesis. Through concluding and discussing the conversion mechanisms and influencing factors, the next research orientations on LMWOAs in lake ecosystems are determined, mainly concerning relationships with hydrochemical parameters and microorganisms, and interactions with pollutants. This will enrich the knowledge on organic matter degradation and related environmental effects, and help reconstruct a theoretical framework for organic compound succession and influencing factors, providing basic data for lake eutrophication and ecological risk assessment, conducive to better control over water pollution and proper management of water quality.展开更多
Eutrophication is the most widespread water quality issue globally.To date,most efforts to control eutrophication have focused on reductions of external nutrient inputs,yet importance of nutrient stoichiometry and sub...Eutrophication is the most widespread water quality issue globally.To date,most efforts to control eutrophication have focused on reductions of external nutrient inputs,yet importance of nutrient stoichiometry and subsequent shift in plankton composition in aquatic ecosystem has been largely neglected.To address eutrophication,improved sanitation is one of the United Nations Sustainable Development Goals,spurring the constructions of wastewater treatment facilities that have improved water quality in many lakes and rivers.However,control measures are often targeted at and effective in removing a single nutrient from sewage and thus are less effective in removing the others,resulting in the changes of nutrient stoichiometry.In general,more effective phosphorus removal relative to nitrogen has occurred in wastewater treatment leading to substantial increases in N/P ratios in effluent relative to the influent.Unfortunately,high N/P ratios in receiving waters can impose negative influences on ecosystems.Thus,longterm strategies for domestic wastewater management should not merely focus on the total reduction of nutrient discharge but also consider their stoichiometric balances in receiving waters.展开更多
基金supported by the Metropolitan Water Reclamation District of Greater Chicago(Requisition No.1449764).
文摘The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.
基金supported by the Irish Environmental Protection Agency under the Environmental Monitoring,R&D Sub-Programme,Operational Programme for Environmental Sciences(Grant No.EPA_97_0151)
文摘This paper describes research undertaken by the authors to develop an integrated measurement and modeling methodology for water quality management of estuaries. The approach developed utilizes modeling and measurement results in a synergistic manner. Modeling results were initially used to inform the field campaign of appropriate sampling locations and times, and field data were used to develop accurate models. Remote sensing techniques were used to capture data for both model development and model validation. Field surveys were undertaken to provide model initial conditions through data assimilation and determine nutrient fluxes into the model domain. From field data, salinity re- lationships were developed with various water quality parameters, and relationships between chlorophyll a concentrations, transparency, and light attenuation were also developed. These relationships proved to be invaluable in model development, particularly in modeling the growth and decay of chlorophyll a. Cork Harbour, an estuary that regularly experiences summer algal blooms due to anthropogenic sources of nutrients, was used as a case study to develop the methodology. The integration of remote sensing, conventional fieldwork, and modeling is one of the novel aspects of this research and the approach developed has widespread applicability.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
文摘Taking the water ecosystem of Small Xingkai Lake as research object,through the survey and analysis of aquatic organism indicators,this paper established an ecosystem integrity evaluation system with the biological integrity as the criterion layer. Using the index of biological integrity and comprehensive health index,it evaluated the health status of water ecosystem of Small Xingkai Lake.
文摘Visual satisfaction of the tourists with a water body is strongly influenced by water clarity, which is in turn influenced by a number of water quality parameters. Visual satisfaction thus stands to benefit from having a water quality management tool that results in better water clarity. A Clarity Suitability Index of Water Quality (CSIWQ), derived from clarity suitability curves of selected water quality parameters, can allow estimation of optimal values for these parameters, while ensuring high visual satisfaction among tourists. The present study used sampling and survey methodologies to investigate water clarity and quality at five tourism fishing ports;simultaneously, tourists’ visual satisfaction with a water body was assessed through a questionnaire based on their perceptions. The relationship between tourists’ visual satisfaction and water clarity was found to be positive and strong, with water clarity having predictive power of 74.2%. The study showed that DO, BOD, TP, and SS were the most critical parameters for water clarity. A continued product approach of CSIWQ was found to be most appropriate for describing the relationship between water clarity and these four parameters. This enabled a CSIWQ Index value to be calculated. With a CSIWQ value of 0.6, water clarity would be more than 2.08 m, and tourists would experience very high satisfaction. CSI curves showed that DO would preferably be 9.0 mg/L, and BOD, TP, and SS less than 0.5 mg/L, 0.12 mg/L, and 45.0 mg/L, respectively. The model thus produced valuable insights for assessing and improving water quality and ensuring high levels of visual satisfaction among tourists in tourism fishing ports. This model identified only four parameters but could be improved by ensuring that other water quality parameters were included, to encourage an increase in the number of tourists and to include monitoring of more pollutant sources.
文摘Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the attainment of the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized.
文摘This study assessed the fish production, culture facilities, operations, water resource management and profitability of fish farming in Katsina State, Nigeria, with a view of understanding the status of aquaculture development in Katsina State. Data were collected using structured questionnaire administered to 35 out of the active 42 farms in Katsina State at the period and the data obtained were analyzed using descriptive statistics and linear regression. Among the respondents, 37.1% used concrete tank alone and another 37.2% used concrete tank with other types of culture facilities, 57.1% practised mono-culture techniques and 77.1% used stagnant renewal system as culture system. Management of water quality was done by majority(82.9%) with mere visual evaluation, while 68.6% did not use any forms of water treatment. Most of the farms(80%) depended on imported feed for feeding their fish and gross profits of ■7.29±1.81 and ■157.83±118.08 were obtained on fingerlings and adult fish, respectively. The tested explanatory variables were responsible for 45.4% change in profitability and profitability was found to be dependent on feeding cost(t=–3.38 and p=0.002) and size of fish at harvest(t=2.70 and p=0.011). The research findings established that fish farming in Katsina State was under developed.
文摘PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical ones such as multiple lineal regression. In this work they were used to model four water quality parameters at the Amadorio Reservoir (Alicante, Spain), namely: water temperature, dissolved oxygen, pH and conductivity. The main purpose of this study was to predict the future quality of the water and, thus improve its management. Raw data correspond to daily values of mean wind speed, mean wind direction, maximum wind speed, mean, minimum and maximum air temperature, number of hours below 7 ~C, relative humidity, global solar radiation, total precipitation, evapotranspiration, exploitation volume, inflow, outflow, filtration, depth and Julian day. Two years were considered (2004-2005) to get the calibration (186 days, 4,401 registrations) and validation (185 days, 4,573 registrations) datasets. Models were developed using either all the variables or a reduced subset; furthermore, PLSR yielded the best results.
基金financially supported by the National Natural Sciences Foundation of China(No.41373138,41003055,41261140337)the National Science and Technology Major Special Project(No.2011ZX07212-007)State Key Laboratory of Environmental Geochemistry(No.SKLEG2013404),Institute of geochemistry, Chinese Academy of Sciences
文摘Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle during life activities. Photochemical reactions are pivotal for LMWOAs' origination and play a large role in determining their diversity and their ultimate fate. Within the long time that organic matter is preserved in sediments, it can be decomposed and converted to release organic and inorganic pollutants as well as C, N, and P nutrients, which are of potential ecological risk in causing secondary pollution to lake water. The sediment pool is a comprehensive and complex compartment closely associated with overlying water by various biochemical processes, during which LMWOAs play critical roles to transport and transform elements. This article elucidates geochemical behaviors of LMWOAs in the surface environment in details, taking natural water, soil, and aerosol as examples, focusing on reviewing research developments on sources and characteristics, migration and mineralization of LMWOAs and relevant environmental effects. Simultaneously, this review article depicts the categories and contents of LMWOAs or their contribution to DOC in environmental media, and evaluates their importance during organic matter early diagenesis. Through concluding and discussing the conversion mechanisms and influencing factors, the next research orientations on LMWOAs in lake ecosystems are determined, mainly concerning relationships with hydrochemical parameters and microorganisms, and interactions with pollutants. This will enrich the knowledge on organic matter degradation and related environmental effects, and help reconstruct a theoretical framework for organic compound succession and influencing factors, providing basic data for lake eutrophication and ecological risk assessment, conducive to better control over water pollution and proper management of water quality.
基金the National Natural Science Foundation of China(Nos.42122059 and 41977324)the Natural Science Foundation of Tianjin(No.20JCYBJC01080).
文摘Eutrophication is the most widespread water quality issue globally.To date,most efforts to control eutrophication have focused on reductions of external nutrient inputs,yet importance of nutrient stoichiometry and subsequent shift in plankton composition in aquatic ecosystem has been largely neglected.To address eutrophication,improved sanitation is one of the United Nations Sustainable Development Goals,spurring the constructions of wastewater treatment facilities that have improved water quality in many lakes and rivers.However,control measures are often targeted at and effective in removing a single nutrient from sewage and thus are less effective in removing the others,resulting in the changes of nutrient stoichiometry.In general,more effective phosphorus removal relative to nitrogen has occurred in wastewater treatment leading to substantial increases in N/P ratios in effluent relative to the influent.Unfortunately,high N/P ratios in receiving waters can impose negative influences on ecosystems.Thus,longterm strategies for domestic wastewater management should not merely focus on the total reduction of nutrient discharge but also consider their stoichiometric balances in receiving waters.