The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot ...The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot be efficiently removed by conventional water treatment processes,making technically,economically,and environmentally friendly water purification technologies increasingly important.This article introduces a one-step reverse osmosis(OSRO)concept consisting of riverbank filtration(RBF)and reverse osmosis(RO)for drinking water treatment.The OSRO concept combines the relatively low-cost natural pretreatment of river water with an advanced engineered purification system.RBF pro-vides a continuous natural source of water with stable water quality and a robust barrier for contami-nants.With the pre-removal of particles,organic matter,organic micro-pollutants(OMPs),and microbes,RBF becomes an ideal source for a purification system based on RO membranes,in comparison with the direct intake of surface water.OSRO treatment removes almost 99.9%of the particles,pathogens,viruses,and OMPs,as well as the vast majority of nutrients,and thus meets the requirements for the chlorine-free delivery of drinking water with high biostability.The OSRO treatment is cost effective com-pared with the standard conventional series of purification steps involving sprinkling filters,softening,and activated carbon.Artificial bank filtration(ABF),which functions as an artificial recharge in combi-nation with a sand filtration system,is proposed as an alternative for RBF in the OSRO concept to supply drinking water from locally available resources.It is also suggested that the OSRO concept be imple-mented with wind power as an alternative energy source in order to be more sustainable and renewable.An OSRO-based decentralized water system is proposed for water reclaiming and reuse.It is suggested that future water treatment focus on the combination of natural and engineered systems to provide drinking water through technically efficient,financially feasible,resource reusable,and environmentally relevant means.展开更多
Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant ...Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 10^(13) MPs/d to 10.2 × 10^(11) MPs/d while that of the RO treatment decreased to 2.7 × 10^(11) MPs/d. Small scale fiber plastics (< 200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (< 200 μm) could break through IMS system equipped with the RO system.展开更多
基金support from the National Key Research and Development(R&D)program of China(2018YFE0204100)the National Natural Science Foundation of China for International Cooperation and Exchange(51820105011).
文摘The presence of newly emerging pollutants in the aquatic environment poses great challenges for drink-ing water treatment plants.Due to their low concentrations and unknown characteristics,emerging pol-lutants cannot be efficiently removed by conventional water treatment processes,making technically,economically,and environmentally friendly water purification technologies increasingly important.This article introduces a one-step reverse osmosis(OSRO)concept consisting of riverbank filtration(RBF)and reverse osmosis(RO)for drinking water treatment.The OSRO concept combines the relatively low-cost natural pretreatment of river water with an advanced engineered purification system.RBF pro-vides a continuous natural source of water with stable water quality and a robust barrier for contami-nants.With the pre-removal of particles,organic matter,organic micro-pollutants(OMPs),and microbes,RBF becomes an ideal source for a purification system based on RO membranes,in comparison with the direct intake of surface water.OSRO treatment removes almost 99.9%of the particles,pathogens,viruses,and OMPs,as well as the vast majority of nutrients,and thus meets the requirements for the chlorine-free delivery of drinking water with high biostability.The OSRO treatment is cost effective com-pared with the standard conventional series of purification steps involving sprinkling filters,softening,and activated carbon.Artificial bank filtration(ABF),which functions as an artificial recharge in combi-nation with a sand filtration system,is proposed as an alternative for RBF in the OSRO concept to supply drinking water from locally available resources.It is also suggested that the OSRO concept be imple-mented with wind power as an alternative energy source in order to be more sustainable and renewable.An OSRO-based decentralized water system is proposed for water reclaiming and reuse.It is suggested that future water treatment focus on the combination of natural and engineered systems to provide drinking water through technically efficient,financially feasible,resource reusable,and environmentally relevant means.
基金financially supported by the National Natural Science Foundation of China(Grant No.41877131)Taishan Scholar Program of Shandong Province(China)(No.tsqn201812116)+2 种基金Science and Technology Service Network Initiative of the Chinese Academy of Sciences(KFJ-STS-QYZX-114)Two-Hundred Talents Plan of Yantai(China)(Y739011021)Wanhua Chemical Group Co.Ltd.(China).
文摘Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 10^(13) MPs/d to 10.2 × 10^(11) MPs/d while that of the RO treatment decreased to 2.7 × 10^(11) MPs/d. Small scale fiber plastics (< 200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (< 200 μm) could break through IMS system equipped with the RO system.