In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the l...In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm.展开更多
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient r...A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.展开更多
A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season....A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.展开更多
[Objective] The morphological characters of C.lasiocarpa were studied to find its morphological responses to different water regimes and growth stretagies through different water experiences.[Method] A seeding transpl...[Objective] The morphological characters of C.lasiocarpa were studied to find its morphological responses to different water regimes and growth stretagies through different water experiences.[Method] A seeding transplanting experiment with controlled water levels was set up,and the water level was changed at the middle of the season to compare water influence at the seeding stage and later growing period.C.lasiocarpa height,leaf length,leaf number,rhizome and adventitious roots length were measured at certain time througth the growing season.[Result] Results at the thriving season indicated that C.lasiocarpa height and leaf length in the experiment were similar to that in the field,but leaf number was higher under-5 cm water level and dry-wet alternate conditions than that in the field.At later growth period,height and leaf length under constant flooding(15cm) was significantly higher than that under other culture conditions,and also that of the field investigation;while the leaf number had a trend as-5 cm water level treatment>constant flooding>dry-wet alternate>field investigation.The height and leaf length were sensitive to seeding stage water effects,and leaf number sensitive to later influences.[Conclusion] Changes of water regimes in the growing season disturbed the growth of C.lasiocarpa,could accelerate or suspend its wilt,and modified the length of life history.展开更多
The effects of soil water regime and soil reaction on nitrogen distribution and fractional composition of newly-formed humus (decayed products) and the structural characteristics of the newly-formed humic acids (HAs) ...The effects of soil water regime and soil reaction on nitrogen distribution and fractional composition of newly-formed humus (decayed products) and the structural characteristics of the newly-formed humic acids (HAs) were studied in an incubation experiment, with the following results obtained:1. The humus newly formed under submerged conditions was higher in the relative content of α-amino acid-N and the humic acid/ fulvic acid (HA/ FA) ratio than that under upland conditions. The HAs extracted from the former were also higher in C / O ratio, aromaticity and the contents of methoxyl groups and lignin-like components, but lower in the content of carboxyl groups than the HAs from the latter.2. Under upland conditions, the C / organic N ratio and the relative content of mobile HA of newly-formed humus were lower, but the HA / FA ratio was higher in the CaCO3-amended treatment than in non-amended treatment. The presence of CaCO3 also resulted in a decrease of C / N ratio of HA and a slight increase of its carboxyl group content. On the other hand, there was no significant change in the composition and properties of the newly-formed humus with the addition of CaCO3 under submerged conditions.3. Compared with soil HAs, the newly-formed HAs contained more carbohydrates, polypeptides and lignin-like components, and were in lower degrees of oxidation and humification.展开更多
Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is compar...Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is comparatively analyzed. The results are shown as follows. (1) The influence periods are from 25 May to 10 June, from 1 July to 31 August, from 15 September to 31 October and from December to the next April, among which the influence of the water-supplement dispatch in the dry season is not very sensitive. (2) During the period under the pre-discharge dispatch, the runoff volume slightly increases as well as both the average water level and the highest water level rise in the usual year. While in the wet and dry years, the average increase in the runoff volume is 40.25×1 08 m3 and the average rises of the average water level and the highest water level are both 1.06 m. (3) As for the flood-storage dispatch, the flood volume increases slightly, in the dry and wet years, the flood volume, the average water level and the highest water level averagely reduce by 444.02×108 m3, 2.64 m and 1.42 m respectively. (4) Under the water-storage dispatch, the runoff volume slightly in- creases and the water level heightens in a sort in the usual year. And in the dry and wet years the average decreases in the runoff volume, the average water leve/and the highest water levels are respectively 185.27×108 m3, 3.13 m and 2.14 m. (5) During the period under the water-supplement dispatch, the runoff volume, the average water level and the highest water levels averagely decline by 337.7×108 m3, 1.89 m and 2.39 m respectively in the usual and wet years. However, in the dry year, the runoff volume increases as well as the average and highest water levels slightly go up.展开更多
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application...Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.展开更多
Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic eco...Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic ecosystem. In order to achieve this goal, we established a hydrological regime assessment method based on a set of hydrological indicators for lakes with heavy seasonal water level fluctuations. The results suggest that time-sensitive hydrological indicators and specific time scales for various water security aspects must be considered. We discovered that it is more practical and meaningful to combine the water level classification derived from statistical analyses with characteristic hydrological values linked to water security. The case study of Poyang Lake results show that there are no discernable trends of Poyang Lake water regime status over the last 35 years, and the two periods of poor status are in accordance with climate variation in the lake basin area. Scholars and policy makers should focus on both floods and droughts, which are the main water security problems for Poyang Lake. It is hoped that this multi-scale and multi-element hydrological regime assessment method will provide new guidelines and methods for other international scholars of river and lake water assessment.展开更多
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa...A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.展开更多
In shallow groundwater agricultural fields, water exchanges between groundwater and soil water happen frequently and intensively. This paper analyzes the regale of subsurface water during the growing period of winter...In shallow groundwater agricultural fields, water exchanges between groundwater and soil water happen frequently and intensively. This paper analyzes the regale of subsurface water during the growing period of winter wheat from October 1998 to June 1999 in Yucheng area. During an 8- month period of winter wheat growth. 456.66 mm of evapotranspiration and 75.61mm of groundwater evaporation were measured with a new model lysimeter. Groundwater at 1.60-2.40 m depth of water tables contributed 16.6% of total water used by winter wheat under natural. precipitation and irrigation treatment.The results showed that a significant proportion of field evapotranspiration was supplied by groundwater evaporation, whereas the role of groundwater evaporation was not considered during irrigation, leading to soil water percolation into groundwater.In order to improve water use efficiency of crops, some measures were put forward in the paper. Effective use of groundwater and soil water is a key countermeasure for sustainable development of water-saving agriculture and Water resource exploitation in Yucheng area展开更多
Observational results of underground water regime (water level and flow) in some strong earthquakes and moderate earthquakes (in this paper we also call them by 'strong earthquakes')in Chinese mainland are stu...Observational results of underground water regime (water level and flow) in some strong earthquakes and moderate earthquakes (in this paper we also call them by 'strong earthquakes')in Chinese mainland are studied and the following conclusions are obtained. For one strong earthquake, the spatial distributions of the anomalies which include medium term anomalies of one year scale, short term anomalies and imminent anomalies, and underground water stations without the anomalies were mainly related to the causative mechanism and active master faults (active abyssal faults or strongly active faults) around the focal region; The spatial distribution of the anomalies coincided with the specific relation among the anomalies, the focal site, the causative mechanism and active master faults. Finally, the mechanism of the relation was briefly discussed, and the importance about the research result in this paper was set forth.展开更多
Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamic...Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.展开更多
The water budget of the examined wetland was extremely variable in the past six years. Principally, it was affected by the water regime of the River Danube and the climatic factors. In order to investigate the changes...The water budget of the examined wetland was extremely variable in the past six years. Principally, it was affected by the water regime of the River Danube and the climatic factors. In order to investigate the changes of these elements, and to succeed to forecast, statistical methods by using SPSS program were performed. The time series of the evaporation, of the precipitation and of the river's water-level were analysed by linear regression, by exponential smoothing, by deterministic models. In consequence of the river regulation, the low-water and the mean stage of Danube were decreasing during the last hundred years, because the riverbed was permanently deepening. Since the river has overflowed its bed and has inundated to the wide floodplain, the decrease of high-water did not appear. The decline of the flooded days signed the quicker passage of flood. These processes have prevented that the examined wetland is going to fill up from the floods. The difference in summer semester between the evaporation and the precipitation was increasing during the last fifty years. Therefore, the drying out of the wetland is going to be more frequent in the future. In the interests of the survival of this wetland, it is necessary to construct the restoring-system in the floodplain.展开更多
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China...With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.展开更多
This paper presents a method for estimating plant production as a function of the seasonal transpiration total. Transpiration was calculated retrospectively with the HYDRUS-ET software package. This approach is based ...This paper presents a method for estimating plant production as a function of the seasonal transpiration total. Transpiration was calculated retrospectively with the HYDRUS-ET software package. This approach is based on empirical relationships between seasonal transpiration totals of particular canopy and biomass production (yield) grown under standard conditions. Novelty of this approach is the development of the tool to evaluate the biomass production as related to the seasonal transpiration. The cumulative frequency distribution of seasonal transpiration was chosen as the basic characteristic of the soil water regime. This approach allows one to estimate cumulative frequency curves of actual and potential yields. The difference between these two curves is the cumulative frequency distribution of possible yield increase by optimization of the soil water regime. The method permits a cost-benefit analysis by comparing expected yield increases to the investment and operational expenses of the newly designed irrigation/drainage system, or of newly invoked water management practices,展开更多
The study of water and salt movement in soil is of vital importance to the prevention of secondary salinization, the reclamation of salt-affected soil and the scheduling of rational irrigation and drainage. In this pa...The study of water and salt movement in soil is of vital importance to the prevention of secondary salinization, the reclamation of salt-affected soil and the scheduling of rational irrigation and drainage. In this paper, on the basis of numerical simulation, the processes of salt accumulation and leaching of salts in soils under the conditions of evaporation, rainfall infiltration and irrigation are studied. The numerical methods for the prediction of water and salt regime are investigated.展开更多
Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted ...Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.展开更多
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(st...Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.展开更多
文摘In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm.
基金1Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-413) andthe National High Technology Research and Development Program of China (863 Program) (No. 2002AA601012).
文摘A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.
基金This work was supported by the Hundred Talents Program launched by the Chinese Academy of Sciencesthe National Key Basic Research Development Foundation of China(G1999011805).
文摘A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.
基金Supported by the National Natural Science Foundation of China(41001030)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ5194,2014JM7206)+1 种基金the Education Department of Shaanxi Province Special Research Project(12JK048415JK1386)
文摘[Objective] The morphological characters of C.lasiocarpa were studied to find its morphological responses to different water regimes and growth stretagies through different water experiences.[Method] A seeding transplanting experiment with controlled water levels was set up,and the water level was changed at the middle of the season to compare water influence at the seeding stage and later growing period.C.lasiocarpa height,leaf length,leaf number,rhizome and adventitious roots length were measured at certain time througth the growing season.[Result] Results at the thriving season indicated that C.lasiocarpa height and leaf length in the experiment were similar to that in the field,but leaf number was higher under-5 cm water level and dry-wet alternate conditions than that in the field.At later growth period,height and leaf length under constant flooding(15cm) was significantly higher than that under other culture conditions,and also that of the field investigation;while the leaf number had a trend as-5 cm water level treatment>constant flooding>dry-wet alternate>field investigation.The height and leaf length were sensitive to seeding stage water effects,and leaf number sensitive to later influences.[Conclusion] Changes of water regimes in the growing season disturbed the growth of C.lasiocarpa,could accelerate or suspend its wilt,and modified the length of life history.
文摘The effects of soil water regime and soil reaction on nitrogen distribution and fractional composition of newly-formed humus (decayed products) and the structural characteristics of the newly-formed humic acids (HAs) were studied in an incubation experiment, with the following results obtained:1. The humus newly formed under submerged conditions was higher in the relative content of α-amino acid-N and the humic acid/ fulvic acid (HA/ FA) ratio than that under upland conditions. The HAs extracted from the former were also higher in C / O ratio, aromaticity and the contents of methoxyl groups and lignin-like components, but lower in the content of carboxyl groups than the HAs from the latter.2. Under upland conditions, the C / organic N ratio and the relative content of mobile HA of newly-formed humus were lower, but the HA / FA ratio was higher in the CaCO3-amended treatment than in non-amended treatment. The presence of CaCO3 also resulted in a decrease of C / N ratio of HA and a slight increase of its carboxyl group content. On the other hand, there was no significant change in the composition and properties of the newly-formed humus with the addition of CaCO3 under submerged conditions.3. Compared with soil HAs, the newly-formed HAs contained more carbohydrates, polypeptides and lignin-like components, and were in lower degrees of oxidation and humification.
基金National Natural Science Foundation of China, No.41071067 Program of the Key Discipline Construction of the Physical Geography in Hunan Province
文摘Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is comparatively analyzed. The results are shown as follows. (1) The influence periods are from 25 May to 10 June, from 1 July to 31 August, from 15 September to 31 October and from December to the next April, among which the influence of the water-supplement dispatch in the dry season is not very sensitive. (2) During the period under the pre-discharge dispatch, the runoff volume slightly increases as well as both the average water level and the highest water level rise in the usual year. While in the wet and dry years, the average increase in the runoff volume is 40.25×1 08 m3 and the average rises of the average water level and the highest water level are both 1.06 m. (3) As for the flood-storage dispatch, the flood volume increases slightly, in the dry and wet years, the flood volume, the average water level and the highest water level averagely reduce by 444.02×108 m3, 2.64 m and 1.42 m respectively. (4) Under the water-storage dispatch, the runoff volume slightly in- creases and the water level heightens in a sort in the usual year. And in the dry and wet years the average decreases in the runoff volume, the average water leve/and the highest water levels are respectively 185.27×108 m3, 3.13 m and 2.14 m. (5) During the period under the water-supplement dispatch, the runoff volume, the average water level and the highest water levels averagely decline by 337.7×108 m3, 1.89 m and 2.39 m respectively in the usual and wet years. However, in the dry year, the runoff volume increases as well as the average and highest water levels slightly go up.
基金supported by the National Natural Science Foundation of China (Nos. 41222005, 41330744, 413301335)the Natural Science Foundation of Jiangsu Province (Nos. BK2010611, SBK201220477)+1 种基金Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (Y412201404)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.
基金Under the auspices of Key Research Program of the Chinese Academy of Sciences(No.KFZD-SW-318)National Science Foundation of China(No.41571107)National Basic Research Program of China(No.2012CB417006)
文摘Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic ecosystem. In order to achieve this goal, we established a hydrological regime assessment method based on a set of hydrological indicators for lakes with heavy seasonal water level fluctuations. The results suggest that time-sensitive hydrological indicators and specific time scales for various water security aspects must be considered. We discovered that it is more practical and meaningful to combine the water level classification derived from statistical analyses with characteristic hydrological values linked to water security. The case study of Poyang Lake results show that there are no discernable trends of Poyang Lake water regime status over the last 35 years, and the two periods of poor status are in accordance with climate variation in the lake basin area. Scholars and policy makers should focus on both floods and droughts, which are the main water security problems for Poyang Lake. It is hoped that this multi-scale and multi-element hydrological regime assessment method will provide new guidelines and methods for other international scholars of river and lake water assessment.
文摘A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.
基金This study was supported by National Natural Science Foundation of China with grant number! 49890330-4-2 and 49671013
文摘In shallow groundwater agricultural fields, water exchanges between groundwater and soil water happen frequently and intensively. This paper analyzes the regale of subsurface water during the growing period of winter wheat from October 1998 to June 1999 in Yucheng area. During an 8- month period of winter wheat growth. 456.66 mm of evapotranspiration and 75.61mm of groundwater evaporation were measured with a new model lysimeter. Groundwater at 1.60-2.40 m depth of water tables contributed 16.6% of total water used by winter wheat under natural. precipitation and irrigation treatment.The results showed that a significant proportion of field evapotranspiration was supplied by groundwater evaporation, whereas the role of groundwater evaporation was not considered during irrigation, leading to soil water percolation into groundwater.In order to improve water use efficiency of crops, some measures were put forward in the paper. Effective use of groundwater and soil water is a key countermeasure for sustainable development of water-saving agriculture and Water resource exploitation in Yucheng area
文摘Observational results of underground water regime (water level and flow) in some strong earthquakes and moderate earthquakes (in this paper we also call them by 'strong earthquakes')in Chinese mainland are studied and the following conclusions are obtained. For one strong earthquake, the spatial distributions of the anomalies which include medium term anomalies of one year scale, short term anomalies and imminent anomalies, and underground water stations without the anomalies were mainly related to the causative mechanism and active master faults (active abyssal faults or strongly active faults) around the focal region; The spatial distribution of the anomalies coincided with the specific relation among the anomalies, the focal site, the causative mechanism and active master faults. Finally, the mechanism of the relation was briefly discussed, and the importance about the research result in this paper was set forth.
文摘Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.
文摘The water budget of the examined wetland was extremely variable in the past six years. Principally, it was affected by the water regime of the River Danube and the climatic factors. In order to investigate the changes of these elements, and to succeed to forecast, statistical methods by using SPSS program were performed. The time series of the evaporation, of the precipitation and of the river's water-level were analysed by linear regression, by exponential smoothing, by deterministic models. In consequence of the river regulation, the low-water and the mean stage of Danube were decreasing during the last hundred years, because the riverbed was permanently deepening. Since the river has overflowed its bed and has inundated to the wide floodplain, the decrease of high-water did not appear. The decline of the flooded days signed the quicker passage of flood. These processes have prevented that the examined wetland is going to fill up from the floods. The difference in summer semester between the evaporation and the precipitation was increasing during the last fifty years. Therefore, the drying out of the wetland is going to be more frequent in the future. In the interests of the survival of this wetland, it is necessary to construct the restoring-system in the floodplain.
基金supported by the National Key Research and Development Program of China (2016YFD0300808)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD05B02)+2 种基金the National Natural Science Foundation of China (31571612 and 31100191)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STSZDTP-001)the Hebei Key Research and Development Program, China (15226407D and 17227006D)
文摘With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.
文摘This paper presents a method for estimating plant production as a function of the seasonal transpiration total. Transpiration was calculated retrospectively with the HYDRUS-ET software package. This approach is based on empirical relationships between seasonal transpiration totals of particular canopy and biomass production (yield) grown under standard conditions. Novelty of this approach is the development of the tool to evaluate the biomass production as related to the seasonal transpiration. The cumulative frequency distribution of seasonal transpiration was chosen as the basic characteristic of the soil water regime. This approach allows one to estimate cumulative frequency curves of actual and potential yields. The difference between these two curves is the cumulative frequency distribution of possible yield increase by optimization of the soil water regime. The method permits a cost-benefit analysis by comparing expected yield increases to the investment and operational expenses of the newly designed irrigation/drainage system, or of newly invoked water management practices,
文摘The study of water and salt movement in soil is of vital importance to the prevention of secondary salinization, the reclamation of salt-affected soil and the scheduling of rational irrigation and drainage. In this paper, on the basis of numerical simulation, the processes of salt accumulation and leaching of salts in soils under the conditions of evaporation, rainfall infiltration and irrigation are studied. The numerical methods for the prediction of water and salt regime are investigated.
基金National Natural Science Foundation of China(4100117)Major Science and Technology Program for Water Pollution Control and Treatment of China(2008ZX07103-004).
文摘Aims Myriophyllum spicatum and Hydrilla verticillata are common submerged macrophytes in the Yangtze River basin.To investigate their tolerances and adaptations to water-level fluctuations,an experiment was conducted in a pond.Methods We designed five different amplitudes of water-level fluctuations as static,615,630,660 and 690 cm during the 74 days of the experiment.In each amplitude treatment,two cultivation methods were examined as monoculture and mixed culture.Important Findings The results showed that M.spicatum had greater morphological responses to water-level fluctuations than H.verticillata.Fluctuating amplitude had significant effects on branch number,shoot length and root dry weight(DW)of M.spicatum,whereas it only had significant effect on branch number of H.verticillata.Both fluctuating amplitude and cultivation method had significant effects on total DW of M.spicatum,which was higher in monoculture than mixed culture.The total DW of H.verticillata was affected by fluctuating amplitude only,and the largest biomass was in the amplitude of 630 cm.Fruit DW of M.spicatum was largest in the amplitude of 630 cm,high amplitude of water-level fluctuations would inhibit flowering and seed production.Root DW proportion was significantly affected by fluctuating amplitude and cultivation method in both species,and the root DW proportion of M.spicatum was significantly higher in the amplitude-of 690 cm.We conclude that moderate amplitude of water-level fluctuations can promote the distribution and growth of both species,and in order to accelerate the restoration of both species in natural habitats,the optimum amplitude should be keep at 615 to 630 cm.
基金supported by the National Key Research and Development Program of China (Nos. 2016YFD0200307 and 2018YFC0213302)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2017418)。
文摘Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.