On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe...On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.展开更多
Many regions around the world are characterized by limited water resources, where the average annual per capita renewable water is about 1000 -1700 cubic meters. For instance, in china the problems of water supply are...Many regions around the world are characterized by limited water resources, where the average annual per capita renewable water is about 1000 -1700 cubic meters. For instance, in china the problems of water supply are widely known globally. Though, China is facing main problem which is how to distribute water, instead of water shortage in itself. Therefore, restricted resources of water are increasingly stressed in the future by many factors such as excessive clouds of water, pollution and climate change. On the other hand, most studies have been indicated that the agricultural sector is one of the sectors that will face a large water deficit in the future due to the high demand for food, competition for water resources, drought and the high consumption of water due to the acquisition of traditional surface irrigation techniques. In spite of introduce modern irrigation methods such as drip irrigation in agriculture by developing irrigation methods and eliminating old traditional irrigation methods, however, its efficiency is related to the qualifying of farms and users of irrigation water, where they are the main users of irrigation water in water resources management. The considerable challenge facing agriculture is to raise irrigation efficiency depending on water-saving irrigation systems to provide water resources for crops. Therefore, the purpose of this study was to provide farmers with important points about using drip irrigation technology, to raise their technical level in using irrigation water, through their guidance to the best techniques and to avoid some common mistakes in design, utilization, management and maintenance of drip irrigation system.展开更多
Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this ineff...Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions.展开更多
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir...Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters.展开更多
While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings th...While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48x 109 kWh yr1 when applied to 11 Chinese provinces. Also, the COz emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45 x 109 kWh yr^-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77× 109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world's fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5× 1016 calories and l07 tons, respectively. So far only a small part of agricultural land in China has adopted water and energy saving technologies. Therefore, potential water and energy savings in China by adapting improved irrigation technology could be significant and should be carefully studied and applied.展开更多
This study aimed to compare the effects of two types of drip irrigation line design on cotton yield, water use, and net returns. The experiments were carried out in the arid region of Xinjiang, Northwest China, during...This study aimed to compare the effects of two types of drip irrigation line design on cotton yield, water use, and net returns. The experiments were carried out in the arid region of Xinjiang, Northwest China, during 2009-2010 growing years. The two types of lateral placement are commonly used by the local farmers in the area: double lines (two laterals controlling four rows) and single line designs (one lateral controlling four rows). The results indicated that less irrigation water was applied by single line compared with double lines design. This implies that more irrigation water could be saved using single line, by reducing the water consumption of cotton. The emergence rates for double lines were 2 and 6% higher than those for single line design in 2009 and 2010. The seed cotton yields for double lines design were 5.76 and 6.41 Mg ha-1 which were 13 and 9% higher than for single line design in 2009 and 2010, respectively. Single lines could however lower the investment cost compared to double lines, which produced 10 and 7% more net income in 2009 and 2010, respectively. By contrast, the double lines was more profitable and suitable for the farmers in Northwest China than single line design.展开更多
文摘On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.
文摘Many regions around the world are characterized by limited water resources, where the average annual per capita renewable water is about 1000 -1700 cubic meters. For instance, in china the problems of water supply are widely known globally. Though, China is facing main problem which is how to distribute water, instead of water shortage in itself. Therefore, restricted resources of water are increasingly stressed in the future by many factors such as excessive clouds of water, pollution and climate change. On the other hand, most studies have been indicated that the agricultural sector is one of the sectors that will face a large water deficit in the future due to the high demand for food, competition for water resources, drought and the high consumption of water due to the acquisition of traditional surface irrigation techniques. In spite of introduce modern irrigation methods such as drip irrigation in agriculture by developing irrigation methods and eliminating old traditional irrigation methods, however, its efficiency is related to the qualifying of farms and users of irrigation water, where they are the main users of irrigation water in water resources management. The considerable challenge facing agriculture is to raise irrigation efficiency depending on water-saving irrigation systems to provide water resources for crops. Therefore, the purpose of this study was to provide farmers with important points about using drip irrigation technology, to raise their technical level in using irrigation water, through their guidance to the best techniques and to avoid some common mistakes in design, utilization, management and maintenance of drip irrigation system.
基金Tarim Oilfield Corporation of China National Petroleum Corporation for providing funds
文摘Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions.
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.
基金supported by the State Social Science Funds of China (14BGL093)the Specialized Research Fund for the Jointed Doctoral Program of Higher Education of China (20124105110006)the International Development Research Center (107093-001)
文摘Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters.
基金funded by the National Natural Science Foundation of China(31270748and91025008)the Shenzhen Science and Technologies Development Plan Program of China(JC201005280681A)
文摘While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48x 109 kWh yr1 when applied to 11 Chinese provinces. Also, the COz emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45 x 109 kWh yr^-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77× 109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world's fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5× 1016 calories and l07 tons, respectively. So far only a small part of agricultural land in China has adopted water and energy saving technologies. Therefore, potential water and energy savings in China by adapting improved irrigation technology could be significant and should be carefully studied and applied.
基金supported by the National High-Tech R&D Program of China (2011AA100507)the Action Plan for the Development of Western China of the Chinese Academyof Sciences (KZCX2-XB3-16)the National Science Foundation for Young Scientists of China (51009126)
文摘This study aimed to compare the effects of two types of drip irrigation line design on cotton yield, water use, and net returns. The experiments were carried out in the arid region of Xinjiang, Northwest China, during 2009-2010 growing years. The two types of lateral placement are commonly used by the local farmers in the area: double lines (two laterals controlling four rows) and single line designs (one lateral controlling four rows). The results indicated that less irrigation water was applied by single line compared with double lines design. This implies that more irrigation water could be saved using single line, by reducing the water consumption of cotton. The emergence rates for double lines were 2 and 6% higher than those for single line design in 2009 and 2010. The seed cotton yields for double lines design were 5.76 and 6.41 Mg ha-1 which were 13 and 9% higher than for single line design in 2009 and 2010, respectively. Single lines could however lower the investment cost compared to double lines, which produced 10 and 7% more net income in 2009 and 2010, respectively. By contrast, the double lines was more profitable and suitable for the farmers in Northwest China than single line design.