Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as ...Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be co...Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.展开更多
The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region w...The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management.展开更多
An increasing number of industrial, agricultural, and commercial chemicals in the aquatic environment leads to various deleterious effects on organisms, which is becoming an increasingly serious problem in China. In t...An increasing number of industrial, agricultural, and commercial chemicals in the aquatic environment leads to various deleterious effects on organisms, which is becoming an increasingly serious problem in China. In this study, the comet assay was conducted to investigate the genotoxicity to human body caused by organic concentrates in the drinking water sources of Nanjing City from Yangtze River of China, and health and ecology risk due to expose to these organic pollutants were evaluated with the multimedia environmental assessment system (MEAS). For all the water samples, they were collected from four different locations in the drinking water sourcr samples, es of Nanjing City. The results of the comet assay showed that all the organic concentrates from the water samples could induce different levels DNA damages on human peripheral blood lymphocytes, and a statistically significant difference (p〈0.01) was observed compared with the solvent control, which demonstrated the genotoxicity was in existence. According to the ambient severity (AS) of individual compound, we had sorted out the main organic pollutants in the drinking water source of the four waterworks, and the results showed that there was some potential hazard to human body for all the source water, namely the total ambient severity (TAS) of health for each water source was more than 1. However, the TAS of ecology for each water source was less than 1, which indicated that it was safe to ecology. The results of this investigation demonstrate the application of the comet assay and the MEAS in aquatic environmental monitoring studies, and the comet assay found to be fast, sensitive, and suitable for genotoxicity monitoring programs of drinking water source.展开更多
The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as ...The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.展开更多
Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source res...Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source reserve areas.First,this paper reviews the three stages of ecological compensation research progress.Based on the review,using the theory of externality,the ecological environment system of water source reserve areas is then analyzed.This paper argues that the connotation of ecological compensation in water source reserve areas is a kind of institutional arrangement,which is designed to internalize externalities.Finally,based on the understanding of the connotation of ecological compensation in water source reserve areas,five principles for establishing and improving the ecological compensation mechanism are proposed,including the principle of fairness and justice,the principle of equivalence of equality and responsibility,the principle of flexibility and effectiveness,the principle of "earmark funds,and implementation by law," and the principle of government compensation supplemented with market compensation.展开更多
The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemi...The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemistry attracts a series of studies related to water source discrimination. In this paper, a simple method for constructing the water source discrimination model based on major ions and multivariate statistical analysis was reported using the following procedures: (1) collection of data and interpretation, (2) analysis of controlling factors based on the chemical composition of groundwater, (3) "pure" sample chosen, and (4) discrimination model establishment. After the processes, two functions and a diagram were established for three aquifers (the Quaternary, Coal bearing, and Taiyuan Fm.) from the Renlou Coal Mine in northern Anhui Province, China. The method can be applied in almost all coal mines and can be used for evaluating the contribution ratios if the water is collected from a mixing source.展开更多
The potential harm of organic pollutants in drinking water to human health is widely focused on in the wodd; more and more pollutants with genotoxic substances are released into the aquatic environment. Water source s...The potential harm of organic pollutants in drinking water to human health is widely focused on in the wodd; more and more pollutants with genotoxic substances are released into the aquatic environment. Water source samples were collected from 7 different localities of Nanjing City. The potential genotoxicity of organic extracts from drinking water sources were investigated by means of the comet assay in human peripheral lymphocytes. The results showed that all the organic extracts from all the water source samples could induce DNA damages of human peripheral blood lymphocytes at different levels. A significant difference (P 〈 0.01) was observed when compared with the solvent control, The DNA damage increased with the increase of the dosage of the original water source. Significant differences of DNA damage were observed in different drinking water sources, as shown by the multiple comparisons analysis at the dosage of 100x; the degree of DNA damage treated by Hushu waterworks (at town level) was the most serious, the arbitrary units (AU) was 141.62±6.96, however, that of Shangyuanmen waterworks (at city level) was only 109.64±2.97. The analysis also revealed that the genotoxicity of town's water sources was higher than that of the city. The results demonstrated that the comet assay can be successfully applied to the genotoxicity monitoring programs of drinking water sources.展开更多
The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually character...The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.展开更多
Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and i...Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and in combination with survey,analysis and evaluation of urban-rural drinking water source areas in whole city.There are engineering measures and non-engineering measures,to guarantee drinking water security of rural residents,improve rural ecological environment,realize sustainable use of water resource,and promote sustainable development of society.Engineering measures include conservation and protection of water resource,ecological restoration,isolation,and comprehensive control of pointsource and area-source pollution.Non-engineering measures include construction of monitoring system for drinking water source area,construction of security information system for rural centralized drinking water source area,and construction of emergency mechanism for water pollution accidents in rural water source areas.展开更多
The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteris...The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteristics of groundwater in Luoyang City from the aspects of the division of groundwater aquifer groups,water yield property and groundwater dynamics were described in this paper.Two emergency water sources were selected on basis of comprehensively considering groundwater resources and ecological environmental effects,groundwater quality and exploitation technology,etc.Then it further analysed the aquifer types,water yield properties and groundwater recharge,runoff and discharge conditions of the two emergency water sources,and evaluate the groundwater resources quantity of the water sources.The results are that the shallow underground aquifer in Luoyang City is thick,coarse,and stable in lithology and thickness.The two water sources enjoy good exploitation potential and can be used as backup water sources to supply water in the event of a water source crisis.展开更多
Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water s...Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water sources supplying some liquid water which may be consumed by the methane hydrate formation reactions were designed and assembled. Using them, the full formation processes of methane hydrate was studied. Experimental results show the following: If heat released from nucleation reaction of methane hydrate is diffused rapidly, the nucleation ratios will be enhanced discernibly. While the hydrate is formed, a force is generated that sucks fresh water from the source into the vicinity of the hydrate, slowing down the cementation process and causing some hydrate grain dissociation. As a result of cementation differences, the hydrate reaction processes with different water sources present linear or quadratic equation characteristics. After a few repeated dissociation and formation processes of some hydrate grains caused by the fresh water, the gas amounts contained in hydrate will be significantly enhanced.展开更多
Understanding the variation in a plant’s water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana...Understanding the variation in a plant’s water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana microphylla, precipitation,soil water from different depths, and groundwater to quantitatively analyze the proportion of water sources for the shrub.We found that the water sources of C. microphylla differed with the plant’s ages and the seasons. The main water source for young shrubs was upper-soil water, and it showed significant changes with seasonal precipitation inputs. In summer,the proportion contributed by shallow water was significantly increased with increased precipitation inputs. Then, the contribution from shallow-soil water decreased with the decline in precipitation input in spring and autumn. However, the adult shrubs resorted to deep-soil layers and groundwater as the main water sources during the whole growing season and showed much less seasonal variation. We conclude that the main water source of the young shrubs was upper-soil water and was controlled by precipitation inputs. However, once the shrub gradually grew up and the roots reached sufficient depth, the main water sources change from the upper-soil layer recharged by precipitation to deep-soil water and groundwater, which were relatively stable and abundant in the desert ecosystem. These results also suggest that desert shrubs may be able to switch their main water sources to deep and reliable water sources as their age increases, and this adjustment to water availability carries significant importance for their acclimation to the desert habitat.展开更多
Large amounts of ground ice are born with permafrost on the Qinghai-Tibet Plateau.Degradation of permafrost resulted from the climate warming will inevitably lead to melting of ground ice.The water released from the m...Large amounts of ground ice are born with permafrost on the Qinghai-Tibet Plateau.Degradation of permafrost resulted from the climate warming will inevitably lead to melting of ground ice.The water released from the melting ground ice enters hydrologic cycles at various levels,and changes regional hydrologic regimes to various degrees.Due to difficulties in monitoring the perma-frost-degradation-release-water process,direct and reliable evidence is few.The accumulative effect of releasing water,however,is remarkable in the macro-scale hydrologic process.On the basis of the monitoring results of water-levels changes in some lakes on the Qinghai-Tibet Plateau,and combined with the previous results of the hydrologic changing trends at the regional scale,the authors preliminarily discussed the possibilities of the degrading permafrost on the Qinghai-Tibet Plateau as a potential water source during climate warming.展开更多
[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing i...[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing imagery in 2010 and field investigation of GPS record, ecological design for nonpoint source pollution control in Dahe Reservoir water source protection area of Dianchi Lake basin was conducted. Then, the effects of optimization measures were evaluated by the reductions of N and P outputs on different land-use types. E Resultl Control functions of the water source protection area on soil erosion and the emissions of N, P and other pollutants would be promoted after optimization. The optimization meas- ures had a significant effect for prevention and control of the non-point source pollution in the water source protection area. [ Conclusion] The re- search provided scientific basis for promoting ecological construction of the small green basin in Dahe Reservoir water source protection area of Di- anchi Lake basin.展开更多
Objective:To investigate the prevalence,isolation,identification,characterization,antibiotic profile and pathogenicity of Legionellae isolated from various set of waters.Methods:A total of 400 water samples were colle...Objective:To investigate the prevalence,isolation,identification,characterization,antibiotic profile and pathogenicity of Legionellae isolated from various set of waters.Methods:A total of 400 water samples were collected from different water sources.Water samples were pretreated using acid treatment followed by concentration and culture on buffered charcoal yeast extract agar.Parameters like ability of Legionella isolates to grow in various p H range,effect of different concentrations of chlorine and effect of different temperature optima were set up.Biochemical tests were performed to separate Legionellae into species.Antibiotic sensitivity tests and test for pathogenicity were also conducted on isolated strains.Results:The rates of isolation of Legionella pneumophila(L.pneumophila) in different water sources were found to be 20%(lakes),10%(ponds),8%(water-tanks) and 1%(rivers).Most of the isolates could grow in variable p H 6–8 and it could also survive the normal level of chlorination and even at temperature of 42 C.Isolated species of Legionellae resulted in identification of 5 different species,L.pneumophila being the dominant one.Strains of L.pneumophila were resistant to many antibiotics.Inoculation of Legionellae into intracerebral route of suckling mice revealed that L.pneumophila was the most virulent.Conclusions:Serious and fatal L.pneumophila infections may be transmitted through water.Legionella can survive under various conditions in various water sources.L.pneumophila is the important pathogen causing human disease.Great challenge prevails to health care professionals because these Legionellae acquired antibiotic resistance to many routinely prescribed antibiotics.展开更多
We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China ...We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).展开更多
In order to provide further references for studing on the causes of Kaschin-Beck discase (KBD) and measuring for its prevention and treatment from a macroscopic view, we analyzed the natural growth and declineof KBD a...In order to provide further references for studing on the causes of Kaschin-Beck discase (KBD) and measuring for its prevention and treatment from a macroscopic view, we analyzed the natural growth and declineof KBD and the effects of selenium and humic acid on its occurrence from an epidemiologic angle. In this article through a retrospective survey on the spots of disease areas by comparison between a change in water sources and that without. It was proved that a change in water sources was an effective measure for the prevention of KBD occurrence, and the pathogenic factor of KBD was one (or several kinds) of organic compounds or active radicals related to water.展开更多
The etiology for the high tumor mortality in heavy polluted Yinghe river basin is still unclear and polycyclic aromatic hydrocarbons(PAHs)belong to the priority pollutants in water based on the former surveillance dat...The etiology for the high tumor mortality in heavy polluted Yinghe river basin is still unclear and polycyclic aromatic hydrocarbons(PAHs)belong to the priority pollutants in water based on the former surveillance data.In order to explore the potential genotoxicants contributing to the double-endpoint genotoxicity of polluted drinking water source,12 groundwater and 3 surface water samples were collected from 3 villages and the nearby rivers alongside Yinghe river basin,respectively and their comprehensive genotoxicity was estimated with a bioassay group of sOS/umu test and micronucleus(MN)test(MNT).Some groundwater samples showed positive genotoxicity and all surface water samples were highly genotoxic.Eight groundwater samples showed DNA genotoxic effct with the average 4-NQO equivalent concentration(TEQ_(4-NQO))of 0.067μg/L and 0.089μg/L in wet and dry season,respectively.The average MN ratios of groundwater samples were 14.19‰ and 17.52‰ in wet and dry season,respectively.Groundwater samples showed different genotoxic effect among 3 villages.The total PAHs concentrations in all water samples ranged from 8.98 to 25.17 ng/L with an average of 14.97±4.85 ng/L.BaA,CHR,BkF,BaP and DBA were the main carcinogenic PAHs contributing to the genotoxicity of water samples.In conclusion,carcinogenic PAHs are possibly related to the high tumor mortality in the target area.Characterization of carcinogenic PAHs to genotoxicity of drinking water source may shed light on the etiology study for high tumor mortality in Yinghe river basin.Key words:genotoxicity test;drinking water source;high tumor mortality;Yinghe river basin;polycyclic aromatic hydrocarbons(PAHs)展开更多
基金supported by the National Natural Science Foundation of China(52325001,52170009,and 52091542)the National Key Research and Development Program of China(2021YFC3200700)+3 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the International Cooperation Project of Shanghai Science and Technology Commission(20230714100)the Key-Area Research and Development Program of Guangdong Province(2020B1111350001)Tongji University Youth 100 Program.
文摘Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
基金supported by Zhejiang A&F University(2022LFR083)Key R&D Program of Zhejiang Province(2021C02038)the International Centre for Bamboo and Rattan(1632021006)。
文摘Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.
文摘The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management.
基金The Society Development Foundation of Jiangsu Province (No. BS2001039)
文摘An increasing number of industrial, agricultural, and commercial chemicals in the aquatic environment leads to various deleterious effects on organisms, which is becoming an increasingly serious problem in China. In this study, the comet assay was conducted to investigate the genotoxicity to human body caused by organic concentrates in the drinking water sources of Nanjing City from Yangtze River of China, and health and ecology risk due to expose to these organic pollutants were evaluated with the multimedia environmental assessment system (MEAS). For all the water samples, they were collected from four different locations in the drinking water sourcr samples, es of Nanjing City. The results of the comet assay showed that all the organic concentrates from the water samples could induce different levels DNA damages on human peripheral blood lymphocytes, and a statistically significant difference (p〈0.01) was observed compared with the solvent control, which demonstrated the genotoxicity was in existence. According to the ambient severity (AS) of individual compound, we had sorted out the main organic pollutants in the drinking water source of the four waterworks, and the results showed that there was some potential hazard to human body for all the source water, namely the total ambient severity (TAS) of health for each water source was more than 1. However, the TAS of ecology for each water source was less than 1, which indicated that it was safe to ecology. The results of this investigation demonstrate the application of the comet assay and the MEAS in aquatic environmental monitoring studies, and the comet assay found to be fast, sensitive, and suitable for genotoxicity monitoring programs of drinking water source.
基金supported by the National Natural Science Foundation of China (41530745, 41371114, 41361004)the State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating,Gansu Desert Control Research Institute for providing support for sample testing
文摘The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.
基金supported by National Social Science Fund "Study on the construction of ecological compensation system and the related policies of the water source protection zone"[Grant Number 14BJY027]Project of Humanities and Social Science Fund of Ministry of Education "Calculation and compensation method of ecological compensation in River Basin"[Grant Number 13YJA790025]
文摘Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source reserve areas.First,this paper reviews the three stages of ecological compensation research progress.Based on the review,using the theory of externality,the ecological environment system of water source reserve areas is then analyzed.This paper argues that the connotation of ecological compensation in water source reserve areas is a kind of institutional arrangement,which is designed to internalize externalities.Finally,based on the understanding of the connotation of ecological compensation in water source reserve areas,five principles for establishing and improving the ecological compensation mechanism are proposed,including the principle of fairness and justice,the principle of equivalence of equality and responsibility,the principle of flexibility and effectiveness,the principle of "earmark funds,and implementation by law," and the principle of government compensation supplemented with market compensation.
基金Supported by the National Natural Science Foundation of China (41173016)
文摘The demand for energy consumption promotes to find more coal in deep underground up to 1 000 m and brings more serious situation of water disaster. As one of the major methods for water disaster control, hydrogeochemistry attracts a series of studies related to water source discrimination. In this paper, a simple method for constructing the water source discrimination model based on major ions and multivariate statistical analysis was reported using the following procedures: (1) collection of data and interpretation, (2) analysis of controlling factors based on the chemical composition of groundwater, (3) "pure" sample chosen, and (4) discrimination model establishment. After the processes, two functions and a diagram were established for three aquifers (the Quaternary, Coal bearing, and Taiyuan Fm.) from the Renlou Coal Mine in northern Anhui Province, China. The method can be applied in almost all coal mines and can be used for evaluating the contribution ratios if the water is collected from a mixing source.
文摘The potential harm of organic pollutants in drinking water to human health is widely focused on in the wodd; more and more pollutants with genotoxic substances are released into the aquatic environment. Water source samples were collected from 7 different localities of Nanjing City. The potential genotoxicity of organic extracts from drinking water sources were investigated by means of the comet assay in human peripheral lymphocytes. The results showed that all the organic extracts from all the water source samples could induce DNA damages of human peripheral blood lymphocytes at different levels. A significant difference (P 〈 0.01) was observed when compared with the solvent control, The DNA damage increased with the increase of the dosage of the original water source. Significant differences of DNA damage were observed in different drinking water sources, as shown by the multiple comparisons analysis at the dosage of 100x; the degree of DNA damage treated by Hushu waterworks (at town level) was the most serious, the arbitrary units (AU) was 141.62±6.96, however, that of Shangyuanmen waterworks (at city level) was only 109.64±2.97. The analysis also revealed that the genotoxicity of town's water sources was higher than that of the city. The results demonstrated that the comet assay can be successfully applied to the genotoxicity monitoring programs of drinking water sources.
基金supported by the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the West Light Foundation of West Doctor of the Chinese Academy of Sciences+1 种基金the China Postdoctoral Science Foundation (Grant No. 200801244 and 20070420135)the Talented Foundation for Young Scientists of Cold and Arid Regions Environmental and Engineering Research Institute (No. 510984911)
文摘The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.
文摘Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and in combination with survey,analysis and evaluation of urban-rural drinking water source areas in whole city.There are engineering measures and non-engineering measures,to guarantee drinking water security of rural residents,improve rural ecological environment,realize sustainable use of water resource,and promote sustainable development of society.Engineering measures include conservation and protection of water resource,ecological restoration,isolation,and comprehensive control of pointsource and area-source pollution.Non-engineering measures include construction of monitoring system for drinking water source area,construction of security information system for rural centralized drinking water source area,and construction of emergency mechanism for water pollution accidents in rural water source areas.
基金The study was supported by the China Geological Survey Geological Survey Project(12120113004600).
文摘The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteristics of groundwater in Luoyang City from the aspects of the division of groundwater aquifer groups,water yield property and groundwater dynamics were described in this paper.Two emergency water sources were selected on basis of comprehensively considering groundwater resources and ecological environmental effects,groundwater quality and exploitation technology,etc.Then it further analysed the aquifer types,water yield properties and groundwater recharge,runoff and discharge conditions of the two emergency water sources,and evaluate the groundwater resources quantity of the water sources.The results are that the shallow underground aquifer in Luoyang City is thick,coarse,and stable in lithology and thickness.The two water sources enjoy good exploitation potential and can be used as backup water sources to supply water in the event of a water source crisis.
基金the financial support from the Youth Science Foundation (Grant No. 41101070)the CAS West Action Plan (Grant No. KZCX2-XB3-03)
文摘Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water sources supplying some liquid water which may be consumed by the methane hydrate formation reactions were designed and assembled. Using them, the full formation processes of methane hydrate was studied. Experimental results show the following: If heat released from nucleation reaction of methane hydrate is diffused rapidly, the nucleation ratios will be enhanced discernibly. While the hydrate is formed, a force is generated that sucks fresh water from the source into the vicinity of the hydrate, slowing down the cementation process and causing some hydrate grain dissociation. As a result of cementation differences, the hydrate reaction processes with different water sources present linear or quadratic equation characteristics. After a few repeated dissociation and formation processes of some hydrate grains caused by the fresh water, the gas amounts contained in hydrate will be significantly enhanced.
基金supported by the National Science Foundation for Distinguished Young Scholars of China (Grant No. 41701035)the Key Program of National Natural Science Foundation of China (Grant No. 41630861)the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2016M602902)
文摘Understanding the variation in a plant’s water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana microphylla, precipitation,soil water from different depths, and groundwater to quantitatively analyze the proportion of water sources for the shrub.We found that the water sources of C. microphylla differed with the plant’s ages and the seasons. The main water source for young shrubs was upper-soil water, and it showed significant changes with seasonal precipitation inputs. In summer,the proportion contributed by shallow water was significantly increased with increased precipitation inputs. Then, the contribution from shallow-soil water decreased with the decline in precipitation input in spring and autumn. However, the adult shrubs resorted to deep-soil layers and groundwater as the main water sources during the whole growing season and showed much less seasonal variation. We conclude that the main water source of the young shrubs was upper-soil water and was controlled by precipitation inputs. However, once the shrub gradually grew up and the roots reached sufficient depth, the main water sources change from the upper-soil layer recharged by precipitation to deep-soil water and groundwater, which were relatively stable and abundant in the desert ecosystem. These results also suggest that desert shrubs may be able to switch their main water sources to deep and reliable water sources as their age increases, and this adjustment to water availability carries significant importance for their acclimation to the desert habitat.
基金supported by The Outstanding Youth Foundation ProjectNational Natural Science Foundation of China (Grant No.40625004)+1 种基金the grant of the Western Project Program of the Chinese Academy of Sciences (No.KZCX2-XB2-10)the research project of the State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-06)
文摘Large amounts of ground ice are born with permafrost on the Qinghai-Tibet Plateau.Degradation of permafrost resulted from the climate warming will inevitably lead to melting of ground ice.The water released from the melting ground ice enters hydrologic cycles at various levels,and changes regional hydrologic regimes to various degrees.Due to difficulties in monitoring the perma-frost-degradation-release-water process,direct and reliable evidence is few.The accumulative effect of releasing water,however,is remarkable in the macro-scale hydrologic process.On the basis of the monitoring results of water-levels changes in some lakes on the Qinghai-Tibet Plateau,and combined with the previous results of the hydrologic changing trends at the regional scale,the authors preliminarily discussed the possibilities of the degrading permafrost on the Qinghai-Tibet Plateau as a potential water source during climate warming.
基金Supported by Science Technology Key Special Item of the National Water Pollution Control and Treatment,China (2009ZX07102-004)
文摘[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing imagery in 2010 and field investigation of GPS record, ecological design for nonpoint source pollution control in Dahe Reservoir water source protection area of Dianchi Lake basin was conducted. Then, the effects of optimization measures were evaluated by the reductions of N and P outputs on different land-use types. E Resultl Control functions of the water source protection area on soil erosion and the emissions of N, P and other pollutants would be promoted after optimization. The optimization meas- ures had a significant effect for prevention and control of the non-point source pollution in the water source protection area. [ Conclusion] The re- search provided scientific basis for promoting ecological construction of the small green basin in Dahe Reservoir water source protection area of Di- anchi Lake basin.
基金Supported by Rockefeller Foundation,USA(Grant No.External-R.F-2396725281-2015-16)
文摘Objective:To investigate the prevalence,isolation,identification,characterization,antibiotic profile and pathogenicity of Legionellae isolated from various set of waters.Methods:A total of 400 water samples were collected from different water sources.Water samples were pretreated using acid treatment followed by concentration and culture on buffered charcoal yeast extract agar.Parameters like ability of Legionella isolates to grow in various p H range,effect of different concentrations of chlorine and effect of different temperature optima were set up.Biochemical tests were performed to separate Legionellae into species.Antibiotic sensitivity tests and test for pathogenicity were also conducted on isolated strains.Results:The rates of isolation of Legionella pneumophila(L.pneumophila) in different water sources were found to be 20%(lakes),10%(ponds),8%(water-tanks) and 1%(rivers).Most of the isolates could grow in variable p H 6–8 and it could also survive the normal level of chlorination and even at temperature of 42 C.Isolated species of Legionellae resulted in identification of 5 different species,L.pneumophila being the dominant one.Strains of L.pneumophila were resistant to many antibiotics.Inoculation of Legionellae into intracerebral route of suckling mice revealed that L.pneumophila was the most virulent.Conclusions:Serious and fatal L.pneumophila infections may be transmitted through water.Legionella can survive under various conditions in various water sources.L.pneumophila is the important pathogen causing human disease.Great challenge prevails to health care professionals because these Legionellae acquired antibiotic resistance to many routinely prescribed antibiotics.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(Nos.2012ZX07103-005-01,2012ZX07103-004-02)the National Natural Science Foundation of China(Nos.41171366,41471075)the Science Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2012135013)
文摘We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).
文摘In order to provide further references for studing on the causes of Kaschin-Beck discase (KBD) and measuring for its prevention and treatment from a macroscopic view, we analyzed the natural growth and declineof KBD and the effects of selenium and humic acid on its occurrence from an epidemiologic angle. In this article through a retrospective survey on the spots of disease areas by comparison between a change in water sources and that without. It was proved that a change in water sources was an effective measure for the prevention of KBD occurrence, and the pathogenic factor of KBD was one (or several kinds) of organic compounds or active radicals related to water.
基金supported by the National Natural Science Foundation of China(No.21976169)the Natural Science Foundation of Beijing,China(No.8182055)National Health Commission Fund of China(No.WJW1903)。
文摘The etiology for the high tumor mortality in heavy polluted Yinghe river basin is still unclear and polycyclic aromatic hydrocarbons(PAHs)belong to the priority pollutants in water based on the former surveillance data.In order to explore the potential genotoxicants contributing to the double-endpoint genotoxicity of polluted drinking water source,12 groundwater and 3 surface water samples were collected from 3 villages and the nearby rivers alongside Yinghe river basin,respectively and their comprehensive genotoxicity was estimated with a bioassay group of sOS/umu test and micronucleus(MN)test(MNT).Some groundwater samples showed positive genotoxicity and all surface water samples were highly genotoxic.Eight groundwater samples showed DNA genotoxic effct with the average 4-NQO equivalent concentration(TEQ_(4-NQO))of 0.067μg/L and 0.089μg/L in wet and dry season,respectively.The average MN ratios of groundwater samples were 14.19‰ and 17.52‰ in wet and dry season,respectively.Groundwater samples showed different genotoxic effect among 3 villages.The total PAHs concentrations in all water samples ranged from 8.98 to 25.17 ng/L with an average of 14.97±4.85 ng/L.BaA,CHR,BkF,BaP and DBA were the main carcinogenic PAHs contributing to the genotoxicity of water samples.In conclusion,carcinogenic PAHs are possibly related to the high tumor mortality in the target area.Characterization of carcinogenic PAHs to genotoxicity of drinking water source may shed light on the etiology study for high tumor mortality in Yinghe river basin.Key words:genotoxicity test;drinking water source;high tumor mortality;Yinghe river basin;polycyclic aromatic hydrocarbons(PAHs)