Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr...Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.展开更多
Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere...Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP.展开更多
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ...Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.展开更多
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg...North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.展开更多
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an...The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.展开更多
Plant water use efficiency(WUE) is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of foo...Plant water use efficiency(WUE) is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions,improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However,when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2assimilation(AN) and transpiration(E); AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position(governing average light interception) in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.展开更多
The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrog...The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrogen use efficiency (NUE) of drip-irrigated greenhouse tomatoes in northwestern China. The plants were irrigated every seven days at various proportions of 20-cm pan evaporation (Ep). The experiment consisted of three irrigation levels (11, 50% Ep; 12, 75% Ep; and 13, 100% Ep) and three N application levels (N1, 150 kg N ha^-1; N2, 250 kg N ha^-1;and N3, 350 kg N ha^-1). Tomato yield increased with the amount of applied irrigation water in 12 and then decreased in 13. WUE and IWUE were the highest in Ii. WUE was 16.5% lower in 12 than that in I1, but yield was 26.6% higher in 12 than that in I1. Tomato yield, WUE, and IWUE were significantly higher in N2 than that in N1 and N3. NUIE decreased with increasing N levels but NUE increased with increase the amount of water applied. Increasing both water and N levels increased the foliar net photosynthetic rate. I1 and 12 treatments significantly increased the contents of total soluble solids (TSS), vitamin C (VC), lycopene, soluble sugars (SS), and organic acids (OA) and the sugar:acid ratio in the fruit and decreased the nitrate content. TSS, VC, lycopene, and SS contents were the highest in N2. The harvest index (HI) was the highest in 12N2. 12N2 provided the optimal combination of tomato yield, fruit quality, and WUE. The irrigation and fertilisation regime of 75% Ep and 250 kg N ha^-1 was the best strategy of water and N management for the production of drip-irrigated greenhouse tomato.展开更多
Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants wer...Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.展开更多
Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated a...Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated area is rain-fed and the crop productivity is low.Conservation agriculture reduces greenhouse gas emissions by enhancing soil carbon sequestration and then improved soil fertility,WUE and crop productivity.A field experiment展开更多
Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in ...Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased.展开更多
[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material...[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as c...The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as crop, environ-ment, chemicals, cultivation measures, cropping systems, etc, were elaborated. A-mong them, the species and varieties of crop, soil and chemicals were discussed in detail.展开更多
[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "C...[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,展开更多
This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-...This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.展开更多
The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties....The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.展开更多
The North China Plain (NCP) is one of the most important agricultural re- gions in China, but it is experiencing a serious water-resource crisis due to exces- sive exploitation of groundwater reserves. Improving wat...The North China Plain (NCP) is one of the most important agricultural re- gions in China, but it is experiencing a serious water-resource crisis due to exces- sive exploitation of groundwater reserves. Improving water-use efficiency (WUE) of crops is thought to have good potential for conserving groundwater and in maintain- ing high crop production in the region, In this paper, firstly, strategies for improving WUE of crop cultivars in the NCP were discussed. According to studies on key factors affecting cultivar WUE, stomatal conductance, which has large genotypic variability and differs among cultivars in response to drought, is an important physio- logical trait associating closely with the performance of cultivars in WUE and yield. Higher WUE and higher yield may be obtained through strategies of cultivar adop- tion with appropriate stomatal characteristics suitable to different conditions of water availability. Secondly, irrigation scheduling in the North China Plain was further dis- cussed. The irrigation frequency currently employed in this area could be reduced by at least one application (from four to three applications) to obtain higher produc- tion and also higher WUE. Finally, straw mulching and the use of early vigor culti- vats were suggested as two practices that had the potential to be effective in in- creasing crop WUE.展开更多
[Objective] This study was conducted to investigate the effects of different irrigation amounts on rice leaf physiology and water use efficiency. [Method] The irrigation test with three different treatments was carrie...[Objective] This study was conducted to investigate the effects of different irrigation amounts on rice leaf physiology and water use efficiency. [Method] The irrigation test with three different treatments was carried out in the Agrometeo- rological Experimental Station of Nanjing University of Information Science & Technology. [Reset] Under flood irrigation, the rice leaf temperature was lower than wet irrigation by 0.4-0.7 ℃; when the strength of photosynthetically active radiation was in the range of 800-1 800 gmol/(m^2·s), the average stomatal conductance of rice leaves under flood irrigation was higher than that of the wet irrigation treatment by 0.123-0.183 mol H2O/(m^2·s), and the leaf water use efficiency was higher than that of the wet irrigation treatment by 0.24 g/kg; after 10:00 every day, the water use efficiency under flood irrigation was always higher than that of the wet irrigation treatment; and compared with the wet irrigation treatment, the rice of the flood irrigation treatments had higher leaf water use efficiency, and final yields were also remarkably improved by 5.89%-13.97%. [Conclusion] This study will provide a practical reference basis for field management.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
基金funded by the National Natural Science Foundation of China(51969003)the Key Research and Development Project of Gansu Province(22YF7NA110)+4 种基金the Discipline Team Construction Project of Gansu Agricultural Universitythe Gansu Agricultural University Youth Mentor Support Fund Project(GAU-QDFC-2022-22)the Innovation Fund Project of Higher Education in Gansu Province(2022B-101)the Research Team Construction Project of College of Water Conservancy and Hydropower Engineering,Gansu Agricultural University(Gaucwky-01)the Gansu Water Science Experimental Research and Technology Extension Program(22GSLK023)。
文摘Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0206)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100300)+2 种基金the Youth Innovation Promotion Association CAS (2021073)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility ” (EarthLab), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4074)the Open Fund Project of Key Lab of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education (2021VGE04)
文摘Terrestrial ecosystem water use efficiency(WUE)is an important indicator for coupling plant photosynthesis and transpiration,and is also a key factor linking the carbon and water cycles between the land and atmosphere.However,under the combination of climate change and human intervention,the change in WUE is still unclear,especially on the Tibetan Plateau(TP).Therefore,satellite remote sensing data and process-based terrestrial biosphere models(TBMs)are used in this study to investigate the spatiotemporal variations of WUE over the TP from 2001 to 2010.Then,the effects of land use and land cover change(LULCC)and CO_(2) fertilization on WUE from 1981-2010 are assessed using TBMs.Results show that climate change is the leading contributor to the change in WUE on the TP,and temperature is the most important factor.LULCC makes a negative contribution to WUE(-20.63%),which is greater than the positive contribution of CO_(2) fertilization(11.65%).In addition,CO_(2) fertilization can effectively improve ecosystem resilience on the TP.On the northwest plateau,the effects of LULCC and CO_(2) fertilization on WUE are more pronounced during the driest years than the annual average.These findings can help researchers understand the response of WUE to climate change and human activity and the coupling of the carbon and water cycles over the TP.
基金supported by the Ethiopian Ministry of Education.
文摘Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.
文摘North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.
基金funded by the Humanities and Social Science Research Project of Chongqing Education Commission(23SKJD111)Science and Technology Research Project of Chongqing Education Commission(KJQN202101122 and KJQN201904002)+6 种基金Project of Chongqing Higher Education Association(CQGJ21B057)Chongqing Graduate Education Teaching Reform Research Project(yjg223121)Chongqing Higher Education Teaching Reform Research Project(233337)Higher Education Research Project,Chongqing University of Technology(2022ZD01)Annual project of the“14th Five-Year Plan”for National Business Education in 2022(SKKT-22015)Party Building and Ideological and Political Project,Chongqing University of Technology(2022DJ307)Chongqing University of Technology Undergraduate Education and Teaching Reform Research Project(2021YB21).
文摘The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.
基金financial support from the Spanish Ministry of Science and Technology (project AGL2011-30408-C04-01)from Conselleria de Educación, Cultura y Universidades (Govern de les Illes Balears)the European Social Fund through the ESF Operational Programme for the Balearic Islands 2013–2017 (project PD/027/2013)
文摘Plant water use efficiency(WUE) is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions,improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However,when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2assimilation(AN) and transpiration(E); AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position(governing average light interception) in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.
基金supported by grants from the National High-Tech R&D Program of China(863 Program)(2013AA103004)the Water and Technology Support Plan of Shaanxi Province,China(2014slkj-17)
文摘The objective of this study was to investigate the effects of applying different amounts of water and nitrogen on yield, fruit quality, water use efficiency (WUE), irrigation water use efficiency (IWUE) and nitrogen use efficiency (NUE) of drip-irrigated greenhouse tomatoes in northwestern China. The plants were irrigated every seven days at various proportions of 20-cm pan evaporation (Ep). The experiment consisted of three irrigation levels (11, 50% Ep; 12, 75% Ep; and 13, 100% Ep) and three N application levels (N1, 150 kg N ha^-1; N2, 250 kg N ha^-1;and N3, 350 kg N ha^-1). Tomato yield increased with the amount of applied irrigation water in 12 and then decreased in 13. WUE and IWUE were the highest in Ii. WUE was 16.5% lower in 12 than that in I1, but yield was 26.6% higher in 12 than that in I1. Tomato yield, WUE, and IWUE were significantly higher in N2 than that in N1 and N3. NUIE decreased with increasing N levels but NUE increased with increase the amount of water applied. Increasing both water and N levels increased the foliar net photosynthetic rate. I1 and 12 treatments significantly increased the contents of total soluble solids (TSS), vitamin C (VC), lycopene, soluble sugars (SS), and organic acids (OA) and the sugar:acid ratio in the fruit and decreased the nitrate content. TSS, VC, lycopene, and SS contents were the highest in N2. The harvest index (HI) was the highest in 12N2. 12N2 provided the optimal combination of tomato yield, fruit quality, and WUE. The irrigation and fertilisation regime of 75% Ep and 250 kg N ha^-1 was the best strategy of water and N management for the production of drip-irrigated greenhouse tomato.
文摘Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
文摘Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated area is rain-fed and the crop productivity is low.Conservation agriculture reduces greenhouse gas emissions by enhancing soil carbon sequestration and then improved soil fertility,WUE and crop productivity.A field experiment
文摘Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased.
基金Supported by Youth Scientific Research Fund of Shanxi Province(2014021031-2)Fund for National System of Broomcorn Millet Industrial Technology of Ministry of Agriculture(CARS-07-13.5)~~
文摘[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金Supported by National Science-Technology Support Plan Project(2012BAD40B02)~~
文摘The research advance on the influencing factors of crop water use effi-ciency (WUE) was reviewed in this paper. Based on the discussion on the conno-tation of crop WUE, the influencing factors of crop WUE, such as crop, environ-ment, chemicals, cultivation measures, cropping systems, etc, were elaborated. A-mong them, the species and varieties of crop, soil and chemicals were discussed in detail.
基金Supported by Project of Propagation of Improved Potatoes,Project of CropsLivestock and Poultry Breeding in 12th Five-Year Plan of Sichuan ProvinceTeam Project of Sichuan Potato Innovation under National Modern Industrial and Technological System~~
文摘[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201303133-3)Tianjin Science and Technology Plan Project(14ZCDGNC00108)Agricultural Science and Technology Achievements Transformation and Extension Project of Tianjin City(201203030)~~
文摘This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.
文摘The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.
基金Supported by Grants from the Ministry of Science and Technology of China(2011AA100501)the National Natural Science Foundation of China(30871447)~~
文摘The North China Plain (NCP) is one of the most important agricultural re- gions in China, but it is experiencing a serious water-resource crisis due to exces- sive exploitation of groundwater reserves. Improving water-use efficiency (WUE) of crops is thought to have good potential for conserving groundwater and in maintain- ing high crop production in the region, In this paper, firstly, strategies for improving WUE of crop cultivars in the NCP were discussed. According to studies on key factors affecting cultivar WUE, stomatal conductance, which has large genotypic variability and differs among cultivars in response to drought, is an important physio- logical trait associating closely with the performance of cultivars in WUE and yield. Higher WUE and higher yield may be obtained through strategies of cultivar adop- tion with appropriate stomatal characteristics suitable to different conditions of water availability. Secondly, irrigation scheduling in the North China Plain was further dis- cussed. The irrigation frequency currently employed in this area could be reduced by at least one application (from four to three applications) to obtain higher produc- tion and also higher WUE. Finally, straw mulching and the use of early vigor culti- vats were suggested as two practices that had the potential to be effective in in- creasing crop WUE.
文摘[Objective] This study was conducted to investigate the effects of different irrigation amounts on rice leaf physiology and water use efficiency. [Method] The irrigation test with three different treatments was carried out in the Agrometeo- rological Experimental Station of Nanjing University of Information Science & Technology. [Reset] Under flood irrigation, the rice leaf temperature was lower than wet irrigation by 0.4-0.7 ℃; when the strength of photosynthetically active radiation was in the range of 800-1 800 gmol/(m^2·s), the average stomatal conductance of rice leaves under flood irrigation was higher than that of the wet irrigation treatment by 0.123-0.183 mol H2O/(m^2·s), and the leaf water use efficiency was higher than that of the wet irrigation treatment by 0.24 g/kg; after 10:00 every day, the water use efficiency under flood irrigation was always higher than that of the wet irrigation treatment; and compared with the wet irrigation treatment, the rice of the flood irrigation treatments had higher leaf water use efficiency, and final yields were also remarkably improved by 5.89%-13.97%. [Conclusion] This study will provide a practical reference basis for field management.