Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed tha...The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.展开更多
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala...The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homog...The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits tbe same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress caleulat.ion of water-cooled W/Cu divertors.展开更多
In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. Th...In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. The horizontal walls are differentially heated, and the low is maintained at hot condition (sinusoidal) when the high one is cold. The objective of this work is to develop a new height accurate method for solving heat transfer equations. The new method is a Fourth Order Compact (F.O.C). This work aims to show the interest of the method and understand the effect of the presence of nanofluids in closed square systems on the natural convection mechanism. The numerical simulations are performed for Prandtl number ( ), the Rayleigh numbers varying between and for different volume fractions varies between 0% and 10% for the nanofluid (water + Cu).展开更多
This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilizat...This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario....A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.In the present paper,the authors investigate the change in thermal comfort conditions over china based on an ensemble of the projections,using the index of effective temperature(ET),which considers the aggregate effects of temperature,relative humidity,and wind on human thermal perception.The analysis also accounts for exposure as measured by distributed population amount scenarios.The authors find that the general increase in ET leads to a large increase in population exposure to very hot days(a China-aggregated sixfold increase in‘person-days’by the end of the 21st century.There is a decrease in cool,cold,and very cold person-days.Meanwhile,a decrease in comfortable day conditions by 22%person-days is found despite an increase in climate-based comfortable days.Analysis of the different contributions to the changes(climate,population,and interactions between the two)show that climate effects play a more important role in the hot end of the thermal comfort categories,while the population effects tend to be dominant in the cold categories.Thus,overall,even a mid-level warming scenario is found to increase the thermal stress over China,although there is a strong geographical dependence.The inclusion of population exposure strongly modulates the climateonly signal,which highlights the need for including socioeconomic factors in the assessment of risks associated with climate change.展开更多
We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity i...We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.展开更多
Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal con...Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.展开更多
Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular compone...Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.展开更多
Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different a...Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.展开更多
Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber...Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber is established and the cook-off process of modular charge in gun chamber is numerically simulated.Then the effects of module number and firing condition on charge thermal safety are evaluated by researching the cook-off response characteristics of modules.The results show that under conditions of different module numbers the cook-off responses all occur on the module closest to the boundary of missile,and the single-base propellants located at the inner surface of cartridge ignite first.When the number of loaded module changes from 1 to 6,the cook-off response temperatures vary little,only in a small range of 478.1 K-482.4 K.The cook-off response times decrease logarithmically in the range of 211.25-166.7 s with the increasing length of residual air gap in gun chamber.The simulation results are well matched with the experimental data.Furthermore,different firing conditions have greatinfluence on the cook-off response time,minor influence on the initial response position and little in-fluence on the response temperature.Under the three conditions of consecutive 32 launches with 5 rounds/min,43 launches with 1 round/min,and 41 launches with different firing frequencies,the cook off response temperatures are 479.2 K,481.1 K and 479.9 K respectively and the response times are 709.25,211.2 s and 214.4 s respectively.The response position is near the middle area of the inner cartridge surface in the former condition and near the right area in the latter two conditions.展开更多
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae...As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.展开更多
An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equ...An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.展开更多
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition...A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition展开更多
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金National Natural Science Foundation of China(No.32260643)for financial support of this study。
文摘The physicochemical properties of plasma-activated water(PAW)generated under different process conditions were investigated,and their changes under different storage conditions were also studied.The results showed that increasing the processing time and power,and decreasing generated water volume,could cause an increase in the redox potential,conductivity,and temperature of PAW,and a decrease in its pH.A slower dissipation of the reactive oxygen and nitrogen species in PAW was found on storage at 4℃in a sealed conical flask than on storage at room temperature.The inactivation ability of plasma-activated lactic acid(LA)to Listeria monocytogenes(L.monocytogenes)and Pseudomonas aeruginosa(P.aeruginosa)was higher than that of PAW or LA alone under the same experimental conditions.The results of this study may provide theoretical information for the application of PAW as a potential antimicrobial agent in the future.
基金funded by the National Natural Science Foundation of China (No.42261028,No.41961010,No.41801033)the "Light of West China" Program for the Organization Department of the Central Committee of the CPC, etc. (Zhang Mingli)+2 种基金the Chinese Academy of Sciences "Light of West China" Program for Western Young ScholarsIndustrial support program of higher education of Gansu province (2020C-40)Basic Research Innovation Group of Gansu province (20JR5RA478)
文摘The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)
文摘The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits tbe same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress caleulat.ion of water-cooled W/Cu divertors.
文摘In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. The horizontal walls are differentially heated, and the low is maintained at hot condition (sinusoidal) when the high one is cold. The objective of this work is to develop a new height accurate method for solving heat transfer equations. The new method is a Fourth Order Compact (F.O.C). This work aims to show the interest of the method and understand the effect of the presence of nanofluids in closed square systems on the natural convection mechanism. The numerical simulations are performed for Prandtl number ( ), the Rayleigh numbers varying between and for different volume fractions varies between 0% and 10% for the nanofluid (water + Cu).
文摘This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0600704)the National Natural Science Foundation of China(Grant No.41375104)
文摘A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.In the present paper,the authors investigate the change in thermal comfort conditions over china based on an ensemble of the projections,using the index of effective temperature(ET),which considers the aggregate effects of temperature,relative humidity,and wind on human thermal perception.The analysis also accounts for exposure as measured by distributed population amount scenarios.The authors find that the general increase in ET leads to a large increase in population exposure to very hot days(a China-aggregated sixfold increase in‘person-days’by the end of the 21st century.There is a decrease in cool,cold,and very cold person-days.Meanwhile,a decrease in comfortable day conditions by 22%person-days is found despite an increase in climate-based comfortable days.Analysis of the different contributions to the changes(climate,population,and interactions between the two)show that climate effects play a more important role in the hot end of the thermal comfort categories,while the population effects tend to be dominant in the cold categories.Thus,overall,even a mid-level warming scenario is found to increase the thermal stress over China,although there is a strong geographical dependence.The inclusion of population exposure strongly modulates the climateonly signal,which highlights the need for including socioeconomic factors in the assessment of risks associated with climate change.
基金the Shenhuo Mining Group Co.Ltd.,China for its financial support.At the same time,we also thank the National Natural Science Foundation of China(No.40373044)the Natural Science Foundation of Jiangsu Province (No.05KJD610209) for their supportthe Jiangsu Key Laboratory of Resources and Environmental Information Engineering for its technical support.
文摘We studied how bioflocculants,produced by white-rot fungi,affect flocculation in slime water.Based on a test in an orthogonal design,flocculation conditions were optimized.The results show that flocculation activity is at its highest when the following conditions are met:slime water concentration 27.42 g/L;coagulant aid(CaCl_2) mass concentration 5.0 g/L;two-segment stirrings:the first at a stirring speed of 60 r/min for 180 s and the second 180 r/min for 60 s;a pH of 11 and a flocculant concentration of 15 mL/L.The flocculation activity can be up to 98.71%of bioflocculants at the time.Further experiments indicate that most of the flocculation active material is found outside the mycelium cells.This is the extracellular secretion produced by mycelium cells during the fermentation process.This flocculant has strong thermal stability.Many kinds of cations have a flocculation function to assist bioflocculants.This aid-flocculation effect of the divalent cation Ca^(2+) is obvious in the bioflocculant produced by the white-rot fungus.Therefore,this is of great value when applied to control engineering in the battle against water pollution.
基金Supported by National Natural Science Foundation (Grant No.:40872045 41172047)The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01)
文摘Iron sulfide minerals are widely distributed, of which characteristics had the identification significance of formation environment. Previously, there were more research on iron sulfide minerals under hydrothermal condition, and few studies under volcanism formation condition. To simulate volcanic mineralization, the study of different temperature from 250 to 410℃ , different iron sulfur ratio from Fe:S=2∶1 to 1∶8, and two different sources of iron, reduced iron powder (Fe) and ferrous sulfide (FeS), on iron sulfide mineral evolution was investigated under thermal sulfurization condition. By using scanning electron microscopy (SEM), X-ray diffraction (XRD) and other methods, the morphology, composition and structural characteristics of the products were observed and analyzed.
文摘Current use of enrichment and processing technologies of ores requires the introduction of closed circuits of water treatment. A decrease in technological properties is caused by accumulations of ion-molecular components in the circulating water. The objective of the simulation is to determine the maximum allowable concentrations of ions and molecules as well as the choice of conditions for deposition or adsorption.First of all, our examinations decrease the concentration of copper ions and fatty acids in the circulating water. By pre-mixing water with the highest concentration of these ions, a reduction of copper ion and fatty acid concentrations in the recycled water occurs. The results do not only ensure the achievement of the maximum permitted concentration(MPC) of copper and iron, significantly reducing the amount of oxidized copper, they also make it possible to use the united sewage as current water for the flotation process. Mixing and adding filtrate of tailings, discharges of urban wastewater treatment and effluent of ash pit of thermal power stations(TPS) to recycled water causes an increase in the capacity of the enrichment plant by 15–17%.
基金Supported by the National Natural Science Foundation of China under Grant No.10702016
文摘Mathematical models of propellers were created that investigate the influence of periodic boundary conditions on predictions of a propeller's performance.Thrust and torque coefficients corresponding to different advance coefficients of DTMB 4119, 4382, and 4384 propellers were calculated.The pressure coefficient distribution of the DTMB 4119 propeller at different sections was also physically tested.Comparisons indicated good agreement between the results of experiments and the simulation.It showed that the periodic boundary condition can be used to rationally predict the open water performance of a propeller.By analyzing the three established modes for the computation, it was shown that using the spline curve method to divide the grids can meet the calculation's demands for precision better than using the rake cutting method.
文摘Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method,A two-dimensional cook-off model of modular charge in gun chamber is established and the cook-off process of modular charge in gun chamber is numerically simulated.Then the effects of module number and firing condition on charge thermal safety are evaluated by researching the cook-off response characteristics of modules.The results show that under conditions of different module numbers the cook-off responses all occur on the module closest to the boundary of missile,and the single-base propellants located at the inner surface of cartridge ignite first.When the number of loaded module changes from 1 to 6,the cook-off response temperatures vary little,only in a small range of 478.1 K-482.4 K.The cook-off response times decrease logarithmically in the range of 211.25-166.7 s with the increasing length of residual air gap in gun chamber.The simulation results are well matched with the experimental data.Furthermore,different firing conditions have greatinfluence on the cook-off response time,minor influence on the initial response position and little in-fluence on the response temperature.Under the three conditions of consecutive 32 launches with 5 rounds/min,43 launches with 1 round/min,and 41 launches with different firing frequencies,the cook off response temperatures are 479.2 K,481.1 K and 479.9 K respectively and the response times are 709.25,211.2 s and 214.4 s respectively.The response position is near the middle area of the inner cartridge surface in the former condition and near the right area in the latter two conditions.
基金supported by the Program of Applied Basic Research Program of Shanxi Province,China (No.202103021223055)the Shanxi Scholarship Council of Chinathe Key R&D program of Shanxi Province,China (No.202102030201006)。
文摘As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
基金This work was financially supported by the National Natural Science Foundation of China
文摘An engineering numerical model for three dimensional motion of multichain-buoy mooring system in shallow water and survival condition is given in this paper. Shooting-aim method is employed for solving the dynamic equations of chain system in order to match the computation of buoy motion. The responses of buoy and chain have been computed for different wind-wave-current directions and different rigidity of chain. The results show that the present numerical model is reasonable.
文摘A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition