In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea...In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.展开更多
Three kinds of cast iron coatings were prepared by atmospheric plasma spraying. During the spraying, the mild steel substrate temperature was controlled to be averagely 50, 180, and 240℃, respectively. Abrasive wear ...Three kinds of cast iron coatings were prepared by atmospheric plasma spraying. During the spraying, the mild steel substrate temperature was controlled to be averagely 50, 180, and 240℃, respectively. Abrasive wear tests were conducted on the coatings under a dry friction condition. It is ibund that the abrasive wear resistance is enhanced with the substrate temperature increasing. SEM observations show that the wear losses of the coatings during the wear tests mainly result from the spalling of the splats. Furthermore, the improved wear resis- tance of the coatings mainly owes to the formation of oxides and the enhancement in the mechanical properties with the substrate temperature increasing.展开更多
An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutecti...An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.展开更多
Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the...Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the effect of attapulgite clay on sorption capacity is the largest among coating constituents. The sorption capacity of the coating with 2% attapulgite clay is elevated by 81%. The relationship between casting porosity and coating sorption capacity has been studied. It has been pointed out that higher coating sorption capacity for polystyrene decomposition products is helpful to decrease the casting porosity. Results also show that the sorption capacity of self-developed HW-1 coating for polystyrene decomposition products is as good as that of Ashland coating from America.展开更多
A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylen...A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.展开更多
In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound c...In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.展开更多
A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on cas...A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d) and cooling rate (v) of the castings is d= -0.41v+206.1. The linear regression equation for the content of pearlite (w) and solid cooling rate (t) is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LI=C, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.展开更多
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) s...In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.展开更多
A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual st...A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress.Through the first 50 times of thermal cycling,the morphology of coating still inherits the laser casting one,but the dendrites get bigger;After the second 50 times of thermal cycling,corrosion pits emerge from coating,and mostly in the places where coating and substrate meet.The fatigue damage type of coating belongs to stress corrosion.展开更多
PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (...PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.展开更多
Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous report...Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study展开更多
The SEN for thin slab con-casting is easy to break and damage because of the oxidation during preheating and application. The enamel coating material is generally applied on the surface of SEN to avoid the oxidation. ...The SEN for thin slab con-casting is easy to break and damage because of the oxidation during preheating and application. The enamel coating material is generally applied on the surface of SEN to avoid the oxidation. The coating material with born glass and silicon as main starting materials and silica sol as binder was studied. ZrO2 - C and Al2O3 - C materials containing 15% carbon were isostatic pressed, and heated at 600 ℃ , 900 ℃ , 1 200 ℃ , 1 500 ℃ for 2 h, respectively. The results show that the coating material with 70% of boron glass and 30% of silicon bonded by silica sol can form denser protection layer in the above mentioned materials at the range of 600 -1 500 ℃. The oxidation area ratio and weight loss ratio with the coating are much lower than those without the coating.展开更多
Selective laser sintering(SLS),as a kind of additive manufacturing technology,which uses a laser beam to scan and heat powder material layer by layer to form parts(models),is widely used in the field of casting,mainly...Selective laser sintering(SLS),as a kind of additive manufacturing technology,which uses a laser beam to scan and heat powder material layer by layer to form parts(models),is widely used in the field of casting,mainly for preparing casting coated sand cores,investment casting patterns,etc.The SLS technique facilitates rapid casting and shortens the casting production periods by eliminating mold preparation.In this study,we reached conclusions for the basic principles and characteristics of SLS methods,and focused on the research status,key technology and development trend of SLS in the fields of forming coated sand-casting molds and investment casting patterns.展开更多
The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. ...The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.展开更多
A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in...A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.展开更多
A new continuous casting mold repairing method--cold gas dynamic spraying (CGDS) is introduced. The study investigates the advantages of the CGDS process regarding repairing operation, such as convenient, in-situ re...A new continuous casting mold repairing method--cold gas dynamic spraying (CGDS) is introduced. The study investigates the advantages of the CGDS process regarding repairing operation, such as convenient, in-situ repairation,little heat delivery, microstructural and dimensional stability and other special applications. Microstructure and mechanical properties of the copper alloy coating, nickel coating, ceramic composite coating, and their interface to the substrates ,which are usually used in repairing operation have been researched by means of optical microscopy ( OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and micro-hardness tests. Experimental results have demonstrated the relative density of the copper alloy coating is as high as 98.7%, and that no obvious difference can be observed between the CrZrCu substrate and the Cu alloy coating in terms of microstructures; thus the interface is quite difficult to be identified. The bonding strength and micro-hardness of the Cu alloy coating reach up to 37 MPa and 310 HV0.2 ,respectively. The interface between the copper alloy coating and the nickel coating is either zigzag or wave shaped, and the cohesion is relatively good. As-sprayed nickel coating is dominated by severely deformed particles,and the relative density is up to 98.5%. Complete recrystallization occurred after annealing at 900℃ for one hour,while its micro-hardness remains as high as 124.1 HV02. All these results have indicated that CGDS is a promising technology for repairing the continuous casting mold and that its future development is prosperous as well.展开更多
Protective coatings are essential for superalloys to serve as blades of gas turbines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystal...Protective coatings are essential for superalloys to serve as blades of gas turbines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high temperature oxidation law of aluminide coatings.展开更多
The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently r...The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched.In this paper,turning tests were conducted on cemented carbide tools with different coatings(a thick TiN/TiAlN coating,a thin TiN/TiAlN coating,and a nanocomposite(nc)TiAlSiN coating).All coatings were applied by physical vapor deposition.In a comparative study of chip morphology,cutting force,cutting temperature,specific cutting energy,tool wear,and surface roughness,this study analyzed the cutting characteristics of the tools coated with various materials,and established the relationship between the cutting parameters and machining objectives.The results showed that in malleable cast iron machining,the coating material significantly affects the cutting performance of the tool.Among the three tools,the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force,the lowest cutting temperature,least tool wear,longest tool life,and best surface quality.Moreover,in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions,the wear mechanism of the coated tools was found to depend on the cast iron being machined.Therefore,the performance requirements of a tool depend on multiple factors,and selecting an appropriately coated tool for a particular cast iron material is essential.展开更多
基金funded by the National Natural Science Foundation of China(Nos.52271102,52075198 and 52205359)。
文摘In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.
基金supported by the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (No.CHD2009JC131)
文摘Three kinds of cast iron coatings were prepared by atmospheric plasma spraying. During the spraying, the mild steel substrate temperature was controlled to be averagely 50, 180, and 240℃, respectively. Abrasive wear tests were conducted on the coatings under a dry friction condition. It is ibund that the abrasive wear resistance is enhanced with the substrate temperature increasing. SEM observations show that the wear losses of the coatings during the wear tests mainly result from the spalling of the splats. Furthermore, the improved wear resis- tance of the coatings mainly owes to the formation of oxides and the enhancement in the mechanical properties with the substrate temperature increasing.
基金Ministry of Science and Technology of Malaysia for funding the research project under E-science Fund Vote No. 79352
文摘An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.
文摘Effects of coating constituent, coating density, coating layer thickness and temperature on coating sorption capacity for polystyrene decomposition products have been studied systematically. It has been found that the effect of attapulgite clay on sorption capacity is the largest among coating constituents. The sorption capacity of the coating with 2% attapulgite clay is elevated by 81%. The relationship between casting porosity and coating sorption capacity has been studied. It has been pointed out that higher coating sorption capacity for polystyrene decomposition products is helpful to decrease the casting porosity. Results also show that the sorption capacity of self-developed HW-1 coating for polystyrene decomposition products is as good as that of Ashland coating from America.
基金This work is financially supported by a University-Level Doctoral Research Start-Up Fund in 2019.
文摘A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.
基金supports provided by the National Natural Science Foundation of China (No. 52075198)the National Key Research and Development Program of China (Nos. 2020YFB2008300 and 2020YFB2008304)+1 种基金the State Key Laboratory of High Performance Complex Manufacturing in CSU (No. Kfkt2019-01)the Analytical and Testing Center, HUST.
文摘In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.
文摘A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d) and cooling rate (v) of the castings is d= -0.41v+206.1. The linear regression equation for the content of pearlite (w) and solid cooling rate (t) is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LI=C, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.
基金financially supported by the National Science and Technology Major Project of China (No. 2012ZX04010-081)the National High-Tech Research and Development Program of China (No. 2013AA040404)
文摘In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles.
基金Project Sponsored by Committee on Science and Technology of Guizhou Province(943068)
文摘A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress.Through the first 50 times of thermal cycling,the morphology of coating still inherits the laser casting one,but the dendrites get bigger;After the second 50 times of thermal cycling,corrosion pits emerge from coating,and mostly in the places where coating and substrate meet.The fatigue damage type of coating belongs to stress corrosion.
基金supported by the National Natural Science Foundation of China (Grant No.50775085)
文摘PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.
文摘Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study
文摘The SEN for thin slab con-casting is easy to break and damage because of the oxidation during preheating and application. The enamel coating material is generally applied on the surface of SEN to avoid the oxidation. The coating material with born glass and silicon as main starting materials and silica sol as binder was studied. ZrO2 - C and Al2O3 - C materials containing 15% carbon were isostatic pressed, and heated at 600 ℃ , 900 ℃ , 1 200 ℃ , 1 500 ℃ for 2 h, respectively. The results show that the coating material with 70% of boron glass and 30% of silicon bonded by silica sol can form denser protection layer in the above mentioned materials at the range of 600 -1 500 ℃. The oxidation area ratio and weight loss ratio with the coating are much lower than those without the coating.
基金supported by the National Key R&D Program of China(2020YFB2008300,2020YFB2008304)the National Natural Science Foundation of China(51775204,51375190,59635040)。
文摘Selective laser sintering(SLS),as a kind of additive manufacturing technology,which uses a laser beam to scan and heat powder material layer by layer to form parts(models),is widely used in the field of casting,mainly for preparing casting coated sand cores,investment casting patterns,etc.The SLS technique facilitates rapid casting and shortens the casting production periods by eliminating mold preparation.In this study,we reached conclusions for the basic principles and characteristics of SLS methods,and focused on the research status,key technology and development trend of SLS in the fields of forming coated sand-casting molds and investment casting patterns.
文摘The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.
基金Funded by the National Natural Science Foundation of China(31170558)the Fundamental Research Funds for the Central Universities(410500006)
文摘A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.
文摘A new continuous casting mold repairing method--cold gas dynamic spraying (CGDS) is introduced. The study investigates the advantages of the CGDS process regarding repairing operation, such as convenient, in-situ repairation,little heat delivery, microstructural and dimensional stability and other special applications. Microstructure and mechanical properties of the copper alloy coating, nickel coating, ceramic composite coating, and their interface to the substrates ,which are usually used in repairing operation have been researched by means of optical microscopy ( OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and micro-hardness tests. Experimental results have demonstrated the relative density of the copper alloy coating is as high as 98.7%, and that no obvious difference can be observed between the CrZrCu substrate and the Cu alloy coating in terms of microstructures; thus the interface is quite difficult to be identified. The bonding strength and micro-hardness of the Cu alloy coating reach up to 37 MPa and 310 HV0.2 ,respectively. The interface between the copper alloy coating and the nickel coating is either zigzag or wave shaped, and the cohesion is relatively good. As-sprayed nickel coating is dominated by severely deformed particles,and the relative density is up to 98.5%. Complete recrystallization occurred after annealing at 900℃ for one hour,while its micro-hardness remains as high as 124.1 HV02. All these results have indicated that CGDS is a promising technology for repairing the continuous casting mold and that its future development is prosperous as well.
文摘Protective coatings are essential for superalloys to serve as blades of gas turbines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high temperature oxidation law of aluminide coatings.
基金Supported by National Major Science and Technology Projects of China(Grant No.SK201901A31-04)Key Program of NSFC-Guangdong Joint Fund,China(Grant No.U1201245).
文摘The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched.In this paper,turning tests were conducted on cemented carbide tools with different coatings(a thick TiN/TiAlN coating,a thin TiN/TiAlN coating,and a nanocomposite(nc)TiAlSiN coating).All coatings were applied by physical vapor deposition.In a comparative study of chip morphology,cutting force,cutting temperature,specific cutting energy,tool wear,and surface roughness,this study analyzed the cutting characteristics of the tools coated with various materials,and established the relationship between the cutting parameters and machining objectives.The results showed that in malleable cast iron machining,the coating material significantly affects the cutting performance of the tool.Among the three tools,the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force,the lowest cutting temperature,least tool wear,longest tool life,and best surface quality.Moreover,in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions,the wear mechanism of the coated tools was found to depend on the cast iron being machined.Therefore,the performance requirements of a tool depend on multiple factors,and selecting an appropriately coated tool for a particular cast iron material is essential.