Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN....Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.展开更多
There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relat...There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.展开更多
In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the wat...In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.展开更多
Visual and pressurized pipeline systems with single- and multi-undulation layouts were used to study experimentally and analyze theoretically the transient characteristics of water-air two-phase flow during water fill...Visual and pressurized pipeline systems with single- and multi-undulation layouts were used to study experimentally and analyze theoretically the transient characteristics of water-air two-phase flow during water fillings in undulation pipelines based on the combination action analyses of both the communicating pipe and the gravity of the water-air two-phase flows in the descending pipe. For the single undulation pipeline, the complex two-phase flow-pattern evolutions including full pipe flow and stratified flow for low, medium, high water-filling velocity cases, respectively, lead to a great difference in transient pressure, flow pattern and the water-filling duration. Especially for low and medium water-filling velocity cases, the hydraulic theories related to hydraulic drop and hydraulic jump were employed to investigate the entrapped air pocket evolutions in the descending pipe, and the mechanism of negative pressure at the top of the undulation pipes was analyzed. For the same multi-undulation pipeline, due to the different elevations of the three undulation points along flow direction, namely three different types of pipeline layout, high-medium-low case (high elevation undulation point, medium one, and low one), low-medium-high and high-low-medium ones, their water-filling durations are significantly different, i.e., approximately 80.02 s, 227.34 s and 617.78 s. Meanwhile, there are significant differences in flow patterns in water filling, namely larger entrapped air pockets in three descending pipes for the high-medium-low case, entrapped air pockets in the first two descending pipes and open channel stratified flow in the last one for low-medium-high case, some bubbles in three descending pipes for the high-low-medium case.展开更多
Integration of large number of electric vehicles(EVs)with distribution networks is devastating for conventional power system devices such as transformers and power lines etc.This paper proposes a methodology for manag...Integration of large number of electric vehicles(EVs)with distribution networks is devastating for conventional power system devices such as transformers and power lines etc.This paper proposes a methodology for management of responsive household appliances management and EVs with water-filling algorithm.With the proposed scheme,the load profile of a transformer is retained below its rated capacity while minimally affecting the associated consumers.When the instantaneous demand at transformer increases beyond its capacity,the proposed methodology dynamically allocates demand curtailment limit(DCL)to each home served by transformer.The DCL allocation takes convenience factors,load profile and information of flexible appliances into account to assure the comfort of all the consumers.The proposed scheme is verified by modeling and simulating five houses and a distribution transformer.The smart appliances such as an HVAC,a water heater,a cloth dryer and an EV are also modeled for the study.Results show that the proposed scheme performs to reduce overloading effects of the transformer efficiently and assures comfort of the consumers at the same time.展开更多
A 2-D Shooting and Bouncing Ray-tracing method ( SBR ) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cure ulative Distribution Functions ( CCDFS) of in...A 2-D Shooting and Bouncing Ray-tracing method ( SBR ) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cure ulative Distribution Functions ( CCDFS) of indoor Non-Lineof-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution ( i. i.d. ) rayl,eigh channel water-filling capacity. When antenna spacing decreased to 0.53., the capacities of MIMO systerns drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i. i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.展开更多
This paper investigates exact performance of an amplify-and-forward(AF) relay system based on water-filling power allocation in Nakagami-m fading environment, where m is a nonnegative integer plus one half.We first of...This paper investigates exact performance of an amplify-and-forward(AF) relay system based on water-filling power allocation in Nakagami-m fading environment, where m is a nonnegative integer plus one half.We first offer the cumulative distribution function(CDF) and probability density function(PDF) of the received signal-to-noise ratio(SNR) at a destination. Then outage probability, moments of SNR, higher-order statistics of the capacity are explicitly conducted. Especially, average symbol error rate(SER) under an additive white generalized Gaussian noise(AWGGN) is developed for water-filling power allocation scheme. While the average SER subjected by an additive white Gaussian noise(AWGN) can be regarded as a special case. Finally, all theoretical formulas are truly attested by various simulation results.展开更多
This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates ...This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.展开更多
The multi-dimensional time-domain computational fluid dynamics(CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-...The multi-dimensional time-domain computational fluid dynamics(CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-domain CFD approach and the frequency-domain finite element method(FEM) agree well with each other for the dual expansion chamber silencer, straight-through and cross-flow perforated tube silencers without flow. Then, the time-domain CFD approach is used to investigate the effect of flow on the acoustic attenuation characteristics of perforated tube silencers. The numerical predictions demonstrate that the mean flow increases the transmission loss, especially at higher frequencies, and shifts the transmission loss curve to lower frequencies.展开更多
Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused b...Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused by the rotor slot permeance harmonics.By analyzing the research status of electromagnetic vibration of the WSIM and the composition of the air-gap magnetic field of the motor,the idea that the auxiliary slots mainly affect the air-gap field harmonics by changing the air-gap permeance of the motor is put forward.The mathematical model of air-gap permeance of WSIM is established to simulate the influence of auxiliary slots on the air-gap permeance.Through the parametric analysis of the mathematical model,the change of auxiliary slot size is simulated.The air-gap permeance waveform is decomposed by the two-dimensional Fourier transform,and then the variation of the air-gap permeance harmonics with the size of the auxiliary slot is analyzed.Finally,the finite element simulation model of the WSIM with the auxiliary slots is established,and the waveform of the air-gap flux density of the motor is analyzed to verify the effectiveness of the mathematical model.Meanwhile,the results show that after opening the auxiliary slot,the radial electromagnetic force of the motor was reduced by 28.4%.展开更多
Based on existing low-frequency water-filled impedance tube testing facilities, which is a part of the Low Frequency Facility of the Naval Undersea Warfare Center in Beijing, an improved water-filled pulse tube method...Based on existing low-frequency water-filled impedance tube testing facilities, which is a part of the Low Frequency Facility of the Naval Undersea Warfare Center in Beijing, an improved water-filled pulse tube method is presented in this short paper. This proposed study is significantly different from the conventional pulse tube method because of the capability for a single plane damped sine pulse wave to generate in the water-filled pulse tube with a regular waveform and short duration time of about 1ms. During the generation process of the pulse, an inverse filter principle was adopted to compensate the transducer response. The effect of the characteristics of tube termination can be eliminated through the generation process of the pulse. Reflection coefficient from a water/air interface was measured to verify the proposed method. When compared with the expected theoretical values, a relatively good agreement can be obtained in the low frequency range of 500-2 000 Hz.展开更多
Some experimental data recorded from impact tests on empty and water-filled pressurized mild steel pipes are presented. The pipes were supported as a three-span continuous beam and impacted laterally by a rigid indent...Some experimental data recorded from impact tests on empty and water-filled pressurized mild steel pipes are presented. The pipes were supported as a three-span continuous beam and impacted laterally by a rigid indenter at the mid-span of middle span. Three kinds of indenter nose shapes were used: blunt-nose, hemisphere-nose and 90?conical-nose. The internal pressure ranged up to 20 MPa. The perforation failure modes and corresponding critical impact energies were obtained under different test conditions. The time-history curves of the internal pressure and impact force were given. The experiments show that the media filled in the tube greatly decreased the ballistic limit energy.展开更多
Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation s...Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation scheme based on limited backhaul capacity is designed to take a tradeoff between system throughput and fairness. Resource allocation of proportional fairness based on querying table is proposed. It updates RB allocation matrix when center cell has completed resource allocation and delivers the matrix to adjacent cells for their own RB allocation. Furthermore, Water-Filling algorithm based on adaptive water level(AWF) is used for power allocation to boost system fairness. In this paper, performance of downlink CoMP based on limited backhaul capacity and single-point transmission is contrasted, and results indicate that CoMP dramatically enhances system throughput and spectral efficiency. Moreover, AWF power allocation scheme obtains higher system fairness than conventional Water-Filling(WF) algorithm, although it gets slightly lower system throughput. Finally, this paper discussed that the system performance is partially affected by the percentage of CoMP resource.展开更多
The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-...The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.展开更多
This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time ...This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time division duplex(TDD). The system makes use of the same setup as has been used in previous studies of SCFD, but unlike these previous systems, the new system uses water-filling to maximize the spectral efficiency of the uplink channel. The concept of a free window is introduced to the duplex model for measuring, intuitively, the effective bandwidth of the bi-directional communication. The capacity gain is calculated and numerical results show the advantage of the proposed system over that of conventional TDD.展开更多
We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing ...We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.展开更多
A resource allocation algorithm with quality of service(QoS) guarantees in a cellular orthogonal frequency division multiple access(OFDMA) network is proposed.The algorithm is a modified water-filling algorithm.In the...A resource allocation algorithm with quality of service(QoS) guarantees in a cellular orthogonal frequency division multiple access(OFDMA) network is proposed.The algorithm is a modified water-filling algorithm.In the first phase,power and subcarriers are allocated together,and in the second phase,users' minimum data rate requ irements are met,while the remaining resources are allocated in order to maximi ze sum rate.It is a cell-level algorithm,and its main advantages are low implementation complexity and capacity of maintaining higher ratio of QoS satisf ying users' requirements.Simulation results show that this scheme outperform s other proportional resour ce allocation schemes.展开更多
Crosstalk is the main degrading factor in Digital Subscriber Line (DSL) systems which are the result of electromagnetic coupling between two adjacent twisted pairs in a cable. Very-high bit-rate Digital Subscriber Lin...Crosstalk is the main degrading factor in Digital Subscriber Line (DSL) systems which are the result of electromagnetic coupling between two adjacent twisted pairs in a cable. Very-high bit-rate Digital Subscriber Line (VDSL) systems which use higher frequencies for data transmission than the other DSL systems, this effect is more considerable in Bit Error Rate (BER) degradation. This paper considers a complete adaptive iterative water-filling (IWF) algorithm for Resolving Upstream Near-Far Problem in VDSL Systems. The new distributed dynamic spectrum management algorithm is proposed, which improve achievable bit rate of iterative water-filling algorithm. The paper proffers a new power back-off strategy of the spectral mask at the near-end users, in order to protect the far-end users. Simulation of the proposed algorithm indicates that the bit rate is increased considerably rather the IWF and adaptive water-filling (AIWF) algorithms by keeping their low complexity. Furthermore, by adding the number of users in network, the new algorithm achieves performance gains over the AIWF, completely adaptive.展开更多
The water-filling algorithm enables an energy-efficient OFDM-based transmitter by maximizing the capacity of a frequency selective fading channel. However, this optimal strategy requires the perfect channel state info...The water-filling algorithm enables an energy-efficient OFDM-based transmitter by maximizing the capacity of a frequency selective fading channel. However, this optimal strategy requires the perfect channel state information at the transmitter that is not realistic in wireless applications. In this paper, we propose opportunistic error correction to maximize the data rate of OFDM systems without this limit. The key point of this approach is to reduce the dynamic range of the channel by discarding a part of the channel in deep fading. Instead of decoding all the information from all the sub-channels, we only recover the data via the strong sub-channels. Just like the water-filling principle, we increase the data rate over the stronger sub-channels by sacrificing the weaker sub-channels. In such a case, the total data rate over a frequency selective fading channel can be increased. Correspondingly, the noise floor can be increased to achieve a certain data rate compared to the traditional coding scheme. This leads to an energy-efficient receiver. However, it is not clear whether this method has advantages over the joint coding scheme in the narrow-band wireless system (e.g. the channel with a low dynamic range), which will be investigated in this paper.展开更多
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 61102066)the China Postdoctoral Science Foundation (Grant No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.
文摘There are many water-filling factors in Xiaotun Coal Mine, such as effective precipitation, goaf water, mining-induced fissure zone, surface water system, aquifers and tectonics. For different mining levels, the relative importance of these factors is different, and the water-filling condition is changed accordingly. So it is urgent to make it clear for mining. To ensure the safety of mining, we build a system of preventing mine water-filling using detailed AHP (analytical hierarchy process) calculation. This system is based on the analysis of mine water-filling factors in order to define the relative importance of the factors. Decision-makers use it as a strong scientific basis for Xiaotun Coal Mine.The method offered in this paper has been proved to be very applicable.
文摘In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52079140,51779257).
文摘Visual and pressurized pipeline systems with single- and multi-undulation layouts were used to study experimentally and analyze theoretically the transient characteristics of water-air two-phase flow during water fillings in undulation pipelines based on the combination action analyses of both the communicating pipe and the gravity of the water-air two-phase flows in the descending pipe. For the single undulation pipeline, the complex two-phase flow-pattern evolutions including full pipe flow and stratified flow for low, medium, high water-filling velocity cases, respectively, lead to a great difference in transient pressure, flow pattern and the water-filling duration. Especially for low and medium water-filling velocity cases, the hydraulic theories related to hydraulic drop and hydraulic jump were employed to investigate the entrapped air pocket evolutions in the descending pipe, and the mechanism of negative pressure at the top of the undulation pipes was analyzed. For the same multi-undulation pipeline, due to the different elevations of the three undulation points along flow direction, namely three different types of pipeline layout, high-medium-low case (high elevation undulation point, medium one, and low one), low-medium-high and high-low-medium ones, their water-filling durations are significantly different, i.e., approximately 80.02 s, 227.34 s and 617.78 s. Meanwhile, there are significant differences in flow patterns in water filling, namely larger entrapped air pockets in three descending pipes for the high-medium-low case, entrapped air pockets in the first two descending pipes and open channel stratified flow in the last one for low-medium-high case, some bubbles in three descending pipes for the high-low-medium case.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A1A10052459)
文摘Integration of large number of electric vehicles(EVs)with distribution networks is devastating for conventional power system devices such as transformers and power lines etc.This paper proposes a methodology for management of responsive household appliances management and EVs with water-filling algorithm.With the proposed scheme,the load profile of a transformer is retained below its rated capacity while minimally affecting the associated consumers.When the instantaneous demand at transformer increases beyond its capacity,the proposed methodology dynamically allocates demand curtailment limit(DCL)to each home served by transformer.The DCL allocation takes convenience factors,load profile and information of flexible appliances into account to assure the comfort of all the consumers.The proposed scheme is verified by modeling and simulating five houses and a distribution transformer.The smart appliances such as an HVAC,a water heater,a cloth dryer and an EV are also modeled for the study.Results show that the proposed scheme performs to reduce overloading effects of the transformer efficiently and assures comfort of the consumers at the same time.
基金This workis supported by Key Laboratory of OCLT, Mi mistry of Education (BUPT) fund and national nature science fund(60271018 ,60331010) .
文摘A 2-D Shooting and Bouncing Ray-tracing method ( SBR ) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cure ulative Distribution Functions ( CCDFS) of indoor Non-Lineof-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution ( i. i.d. ) rayl,eigh channel water-filling capacity. When antenna spacing decreased to 0.53., the capacities of MIMO systerns drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i. i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.
基金the National Science and Technology Major Project(No.2016ZX03001022)
文摘This paper investigates exact performance of an amplify-and-forward(AF) relay system based on water-filling power allocation in Nakagami-m fading environment, where m is a nonnegative integer plus one half.We first offer the cumulative distribution function(CDF) and probability density function(PDF) of the received signal-to-noise ratio(SNR) at a destination. Then outage probability, moments of SNR, higher-order statistics of the capacity are explicitly conducted. Especially, average symbol error rate(SER) under an additive white generalized Gaussian noise(AWGGN) is developed for water-filling power allocation scheme. While the average SER subjected by an additive white Gaussian noise(AWGN) can be regarded as a special case. Finally, all theoretical formulas are truly attested by various simulation results.
基金supported by National Natural Science Foundation of China(No.61771005)
文摘This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.
基金Project(11174065)supported by the National Natural Science Foundation of China
文摘The multi-dimensional time-domain computational fluid dynamics(CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-domain CFD approach and the frequency-domain finite element method(FEM) agree well with each other for the dual expansion chamber silencer, straight-through and cross-flow perforated tube silencers without flow. Then, the time-domain CFD approach is used to investigate the effect of flow on the acoustic attenuation characteristics of perforated tube silencers. The numerical predictions demonstrate that the mean flow increases the transmission loss, especially at higher frequencies, and shifts the transmission loss curve to lower frequencies.
基金supported by the National Natural Science Funds of China No.51977055Major Science and Technology program of Anhui province No.201903a05020042Anhui Province key laboratory of Large-scale Submersible Electric Pump and Accoutrements。
文摘Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused by the rotor slot permeance harmonics.By analyzing the research status of electromagnetic vibration of the WSIM and the composition of the air-gap magnetic field of the motor,the idea that the auxiliary slots mainly affect the air-gap field harmonics by changing the air-gap permeance of the motor is put forward.The mathematical model of air-gap permeance of WSIM is established to simulate the influence of auxiliary slots on the air-gap permeance.Through the parametric analysis of the mathematical model,the change of auxiliary slot size is simulated.The air-gap permeance waveform is decomposed by the two-dimensional Fourier transform,and then the variation of the air-gap permeance harmonics with the size of the auxiliary slot is analyzed.Finally,the finite element simulation model of the WSIM with the auxiliary slots is established,and the waveform of the air-gap flux density of the motor is analyzed to verify the effectiveness of the mathematical model.Meanwhile,the results show that after opening the auxiliary slot,the radial electromagnetic force of the motor was reduced by 28.4%.
基金Supported by the National Natural Science Foundation of China under Grant No. 11204242 China Postdoctoral Foundation under Grant No. 2011M501477
文摘Based on existing low-frequency water-filled impedance tube testing facilities, which is a part of the Low Frequency Facility of the Naval Undersea Warfare Center in Beijing, an improved water-filled pulse tube method is presented in this short paper. This proposed study is significantly different from the conventional pulse tube method because of the capability for a single plane damped sine pulse wave to generate in the water-filled pulse tube with a regular waveform and short duration time of about 1ms. During the generation process of the pulse, an inverse filter principle was adopted to compensate the transducer response. The effect of the characteristics of tube termination can be eliminated through the generation process of the pulse. Reflection coefficient from a water/air interface was measured to verify the proposed method. When compared with the expected theoretical values, a relatively good agreement can be obtained in the low frequency range of 500-2 000 Hz.
基金Project supported by the National Natural Science Foundation of China (No. 10072036) the Foundation for Returned Scholars from Abroad of Shanxi Province (No. 2000-26).
文摘Some experimental data recorded from impact tests on empty and water-filled pressurized mild steel pipes are presented. The pipes were supported as a three-span continuous beam and impacted laterally by a rigid indenter at the mid-span of middle span. Three kinds of indenter nose shapes were used: blunt-nose, hemisphere-nose and 90?conical-nose. The internal pressure ranged up to 20 MPa. The perforation failure modes and corresponding critical impact energies were obtained under different test conditions. The time-history curves of the internal pressure and impact force were given. The experiments show that the media filled in the tube greatly decreased the ballistic limit energy.
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.
基金supported in part by the National Science and Technology Major Project of China under Grant 2013ZX03001024-003partially supported by the National Natural Science Foundation of China No.61201013
文摘Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation scheme based on limited backhaul capacity is designed to take a tradeoff between system throughput and fairness. Resource allocation of proportional fairness based on querying table is proposed. It updates RB allocation matrix when center cell has completed resource allocation and delivers the matrix to adjacent cells for their own RB allocation. Furthermore, Water-Filling algorithm based on adaptive water level(AWF) is used for power allocation to boost system fairness. In this paper, performance of downlink CoMP based on limited backhaul capacity and single-point transmission is contrasted, and results indicate that CoMP dramatically enhances system throughput and spectral efficiency. Moreover, AWF power allocation scheme obtains higher system fairness than conventional Water-Filling(WF) algorithm, although it gets slightly lower system throughput. Finally, this paper discussed that the system performance is partially affected by the percentage of CoMP resource.
基金supported by the National Natural Science Foundation of China(61071104)the National High Technology Research and Development Program(2008AA12Z305)
文摘The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.
基金supported by the HongKong, Macao and Taiwan Science & Technology Cooperation Program of China (Grant no. 2015DFT10170)the Beijing Higher Education Young Elite Teacher Project
文摘This paper studies the capacity issues of a wireless communication system that implements single channel full duplex(SCFD) communication at the base station(BS), thereby the mobile stations share the channel via time division duplex(TDD). The system makes use of the same setup as has been used in previous studies of SCFD, but unlike these previous systems, the new system uses water-filling to maximize the spectral efficiency of the uplink channel. The concept of a free window is introduced to the duplex model for measuring, intuitively, the effective bandwidth of the bi-directional communication. The capacity gain is calculated and numerical results show the advantage of the proposed system over that of conventional TDD.
基金Supported by the National High Technology Research and Development Programme of China( No. 2007AA01Z221, No. 2009AA01Z246) , and the National Natural Science Foundation of China( No. 60672124, 60832009).
文摘We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.
基金National Natural Science Foundation of China(No.61261018)Guangxi Science Foundation (No.2013GXNSFFA019004)Guangxi Education Department Foundation (No.201106LX151)
文摘A resource allocation algorithm with quality of service(QoS) guarantees in a cellular orthogonal frequency division multiple access(OFDMA) network is proposed.The algorithm is a modified water-filling algorithm.In the first phase,power and subcarriers are allocated together,and in the second phase,users' minimum data rate requ irements are met,while the remaining resources are allocated in order to maximi ze sum rate.It is a cell-level algorithm,and its main advantages are low implementation complexity and capacity of maintaining higher ratio of QoS satisf ying users' requirements.Simulation results show that this scheme outperform s other proportional resour ce allocation schemes.
文摘Crosstalk is the main degrading factor in Digital Subscriber Line (DSL) systems which are the result of electromagnetic coupling between two adjacent twisted pairs in a cable. Very-high bit-rate Digital Subscriber Line (VDSL) systems which use higher frequencies for data transmission than the other DSL systems, this effect is more considerable in Bit Error Rate (BER) degradation. This paper considers a complete adaptive iterative water-filling (IWF) algorithm for Resolving Upstream Near-Far Problem in VDSL Systems. The new distributed dynamic spectrum management algorithm is proposed, which improve achievable bit rate of iterative water-filling algorithm. The paper proffers a new power back-off strategy of the spectral mask at the near-end users, in order to protect the far-end users. Simulation of the proposed algorithm indicates that the bit rate is increased considerably rather the IWF and adaptive water-filling (AIWF) algorithms by keeping their low complexity. Furthermore, by adding the number of users in network, the new algorithm achieves performance gains over the AIWF, completely adaptive.
文摘The water-filling algorithm enables an energy-efficient OFDM-based transmitter by maximizing the capacity of a frequency selective fading channel. However, this optimal strategy requires the perfect channel state information at the transmitter that is not realistic in wireless applications. In this paper, we propose opportunistic error correction to maximize the data rate of OFDM systems without this limit. The key point of this approach is to reduce the dynamic range of the channel by discarding a part of the channel in deep fading. Instead of decoding all the information from all the sub-channels, we only recover the data via the strong sub-channels. Just like the water-filling principle, we increase the data rate over the stronger sub-channels by sacrificing the weaker sub-channels. In such a case, the total data rate over a frequency selective fading channel can be increased. Correspondingly, the noise floor can be increased to achieve a certain data rate compared to the traditional coding scheme. This leads to an energy-efficient receiver. However, it is not clear whether this method has advantages over the joint coding scheme in the narrow-band wireless system (e.g. the channel with a low dynamic range), which will be investigated in this paper.