期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatial distribution and failure mechanism of water-induced landslides in the reservoir areas of Southwest China 被引量:5
1
作者 Mingliang Chen Xingguo Yang Jiawen Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期442-456,共15页
Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data an... Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas. 展开更多
关键词 water-induced landslide Hydropower reservoir Spatial distribution Fundamental control Failure mechanism
下载PDF
Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks 被引量:7
2
作者 Ya-Chuan Liang Yuan Shang +7 位作者 Kai-Kai Liu Zhen Liu Wen-Jie Wu Qian Liu Qi Zhao Xue-Ying Wu Lin Dong Chong-Xin Shan 《Nano Research》 SCIE EI CAS CSCD 2020年第3期875-881,共7页
Room temperature phosphorescence(RTP)materials show potential applications in information security and optoelectronic devices,but it is still a challenge to achieve RTP in organic materials under water ambient due to ... Room temperature phosphorescence(RTP)materials show potential applications in information security and optoelectronic devices,but it is still a challenge to achieve RTP in organic materials under water ambient due to the unstable property of triplet states.Herein,water-induced RTP has been demonstrated in the organic microrod(OMR).Noting that the RTP intensity of the as-prepared OMR is greatly enhanced when water is introduced,and the reason for the enhancement can be attributed to the formation of hydrogen-bonded networks inside the OMR.The hydrogen-bonded networks can confine the molecular motion effectively,leading to the stability of triplet states;thus the lifetime of the OMR can reach 1.64 s after introducing water.By virtue of the long lifetime of the OMR in the presence of water,multilevel data encryption based on the OMR has been demonstrated. 展开更多
关键词 water-induced PHOSPHORESCENCE triplet states hydrogen-bonded networks
原文传递
Remove the water-induced traps toward improved performance in organic solar cells
3
作者 Mumin Shi Tao Wang +10 位作者 Rui Sun Qiang Wu Dandan Pei Hui Wang Wenyan Yang Wei Wang Yao Wu Guohua Xie Tao Wang Long Ye Jie Min 《Science China Materials》 SCIE EI CAS CSCD 2021年第11期2629-2644,共16页
Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic p... Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic performance in organic solar cells(OSCs).Herein,we demonstrated a solvent-water evaporation(SWE)strategy,which can effectively remove the water-induced traps that are omnipresent in photoactive layers,leading to a significant improvement in device performance.A higher power conversion efficiency of 17.10%and a better device photostability are achieved by using this SWE method,as compared with the untreated binary PM6:Y6 system(15.83%).We highlight the water-related traps as a limiting factor for carrier transport and extraction properties,and further reveal the good universality of the SWE strategy applied into OSCs.In addition,organic light-emitting diodes and organic field-effect transistors are investigated to demonstrate the applicability of this SWE approach.This strategy presents a major step forward for advancing the field of organic electronics. 展开更多
关键词 non-fullerene acceptor water-induced traps charge transport device stability organic semiconductors
原文传递
Water-induced luminescence improvement in a lanthanide β-diketone complex for monitoring water purity
4
作者 Xiaojun Zhang Xiaomeng Jin Yuxin Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期2117-2120,共4页
Water-caused luminescence quenching is a well-known and intractable issue for luminescence lanthanide complexes, greatly confining their broad application as sensing and displaying devices in water system.Herein, an a... Water-caused luminescence quenching is a well-known and intractable issue for luminescence lanthanide complexes, greatly confining their broad application as sensing and displaying devices in water system.Herein, an anionic and coordination-saturated lanthanide complex with a nanosheet-like structure has been prepared. It exhibits excellent photophysical properties both in solid state and in aqueous suspension. Noteworthily, a 13% improvement for sensitization efficiency from organic ligand to central lanthanide ion has been realized, indicating an exceptional phenomenon of water-induced luminescence improvement which is rarely reported previously. Moreover, the aqueous suspension of as-prepared luminophore could act as a chemo-sensor responding to various organic solvents in water. Both of waterinduced luminescence improvement and extended sensing behavior in this work provide a new platform for developing highly performant and practical luminescent materials in the water system. 展开更多
关键词 water-induced luminescence improvement Lanthanide complex β-Diketone ligand Water quality monitor Luminescence sensing Through-space charge transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部