Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o...Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.展开更多
Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematical...Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematically using a rheometer,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectrometer,oscillating tribometer,and 3D surface profiler measurements.The results showed that suitable synthetic conditions are two quenching cycles,and the synthetic temperature and time is 240℃for 12 h.The rheological analysis showed that thickener content and different proportions of the two PP molecular weights have a significant influence on the rheological properties of PP grease.High molecular weight PP(H-PP)has a stronger thickening ability than low molecular weight PP(L-PP).The higher the amount of H-PP in the fixed thickener content or the higher the thickener content with a specific proportion,the higher the viscoelasticity of PP grease.The tribological performance is related to the rheological properties.The proportion of two different molecular weight PPs in the thickener content should be appropriate;excessive H-PP content leads to lubrication failure.展开更多
Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this ...Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles.展开更多
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann...Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.展开更多
Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is us...Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid.In this study,population balance models were combined with computational fluid dynamics(CFD)for modeling the tailing thickener.Parameters such as feed flow rate,flocculant dosage,inlet solid percent and feedwell were investigated.CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh copper mine.Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined.Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model ofκ-ε.was used in the steady-state.Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel.The simulation results showed good agreement with the operational data.展开更多
Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with populati...Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.展开更多
The phenomenological theory of sedimentation-thickening processes predicts the settling behavior of a flocculated suspension in dependence of two functions, the batch flux density function and the effective solid stre...The phenomenological theory of sedimentation-thickening processes predicts the settling behavior of a flocculated suspension in dependence of two functions, the batch flux density function and the effective solid stress. These functions were determined using batch settling tests. The governing equations for sedimentation were then solved numerically for these functions and the predictions were compared to the experimental results from pilot scale thickener tests. Firstly, the continuous tests were performed in the plexiglass pilot thickener at different feed flow rates and discharge rates and the solid volume fraction of discharge, the bed height and the time were recorded for each condition. These tests were also simulated and it was observed that there is a good agreement between the results of continuous tests and the results of dynamic simulation. Secondly, the discontinuous tests were performed in the plexiglass pilot thickener at different feed flow rates with a discharge rate of zero. The bed formation rate was determined for each condition. These tests were also simulated and it was observed that there is a good agreement between the results of discontinuous tests and the results of simulation.展开更多
Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD mode...Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD modeling. The population balance was used to describe the particle aggregation and breakup. In this population balance, 15 particle sizes categories were considered. The Eulerian-Eulerian approach with standard k-e turbulence model was applied to describe two phases of slurry flow in the thickener under steady-state condition. The simulation results have been compared with the experimental measurements to validate the accuracy of the CFD modeling. After checking the numerical results, the effect of important parameters such as, feed flow rate, solid percentage in the feed, and solid particle size on the thickener performance was studied. The thickener residence time distribution were obtained by the modeling and also compared with the experimental data. Finally, the effects of feedwell feeding on the average diameter of aggregate and turbulent intensity were evaluated.展开更多
Alkali-soluble associative latex thickeners modified with hydrophobic long chain alkyl groups were prepared using common acrylics and varying amount of a functional monomer,ethoxylated behenyl methacrylate(BEM),throug...Alkali-soluble associative latex thickeners modified with hydrophobic long chain alkyl groups were prepared using common acrylics and varying amount of a functional monomer,ethoxylated behenyl methacrylate(BEM),through emulsion polymerization.It was found that the size of the emulsion particle became larger with addition of BEM.The light transmittance of the thickener latex sharply increased with pH varied from 6 to 7.The associative latex thickener manifested a higher viscosity when solids in the latex thickeners were kept at 0.5 wt%or higher,and the optimal amount of BEM was found to be around 2.5 wt%,or 0.16 mol%.All thickener latexes modified with BEM have better shearing resistance than the BEM-free thickener.展开更多
This study discussed the application of response surface methodology(RSM)and central composite rotatable design(CCRD)for modeling and optimization of the influence of some operating variables on the performance of a l...This study discussed the application of response surface methodology(RSM)and central composite rotatable design(CCRD)for modeling and optimization of the influence of some operating variables on the performance of a lab scale thickener for dewatering of tailing in the flotation circuit.Four thickener operating variables,namely feed flowrate,solid percent,flocculant dosage and feedwell height were changed during the tests based on CCRD.The ranges of values of the thickener variables used in the design were a feed flowrate of 9–21 L/min,solid percent of 8%–20%,flocculant dosage of 1.25–4.25 g/t and feedwell height of 16–26 cm.A total of 30 thickening tests were conducted using lab scale thickener on flotation tailing obtained from the Sarcheshmeh copper mine,Iran.The underflow solid percent and bed height were expressed as functions of four operating parameters of thickener.Predicted values were found to be in good agreement with experimental values(R2values of 0.992 and 0.997 for underflow solid percent and bed height,respectively).This study has shown that the RSM and CCRD could effciently be applied for the modeling of thickener for dewatering of flotation tailing.展开更多
The trouble-free and efficient operation of paste thickeners requires an optimal design and the cooperation of each component.When underflow discharging is suspended,alleviating the vast torque that the remaining soli...The trouble-free and efficient operation of paste thickeners requires an optimal design and the cooperation of each component.When underflow discharging is suspended,alleviating the vast torque that the remaining solids within the thickeners may place on rakes mainly lies in the circulation unit.The mechanism of this unit was analyzed,and a mathematical model was developed to describe the changes in underflow solid content and yield stress.The key parameters of the circulation unit,namely,the height and flow rate,were varied to test its performance in the experiments with a self-designed laboratorial thickening system.Results show that the circulation unit is valid in reducing underflow solid fraction and yield stress to a reasonable extent,and the model could be used to describe its efficiency at different heights and flow rates.A suitable design and application of the circulation unit contributes to a cost-effective operation of paste thickeners.展开更多
In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed...In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system.The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field.Optimization experiments on feed well and self-dilute system were also carried out,and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates' formation and improve the red mud settling speed.Furthermore,the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.展开更多
Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AM...Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.展开更多
To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelin...To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelines and de- hydration. The chemical structure of the thickener is introduced in this paper and the production process is studied. The main processes include immersion, decomposition, dilution and addition of additives. In order to produce a thickener with high viscosity to suspend sands, key factors must be controlled in each process: the immersion time is 2 h; the mass fraction of formaldehyde is 0.01% and mass of NaCO3 accounts for 15% of dry material; the water temperature is 65 ℃ in summer and 72 ℃ in winter and the decomposition time is 2 h in the reaction; the densified decomposition so- lution should be diluted to 1% mass fraction; the additives of calcium ions and pH indicators must be added to the di- luted liquid; the mass fraction of CaCl2 is 0.048% and the pH value of the solution is 7.5. The thickener is a gel with three-dimensional network structure, a liquid with non-Newtonian behaviour and the characteristics of pseudo-plastic material, a solution with little resistance and the ability to revive its oral primary viscosity. It has been successfully ap- plied in Shendong Mines and has great value and wide-spread prospective use.展开更多
Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculat...Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.展开更多
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of ...It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.展开更多
Higher concentration is beneficial for the Paste and Thickened Tailings(PTT)operation in metal mine.Partial paste thickeners are produced lower density underflow.Flocculated tailings are intended to form a water entra...Higher concentration is beneficial for the Paste and Thickened Tailings(PTT)operation in metal mine.Partial paste thickeners are produced lower density underflow.Flocculated tailings are intended to form a water entrapped network structure in thickener,which is detrimental to underflow concentration.In this study,the continuous thickening experiment was carried out for ultra-fine tungsten tailings to study the influence of rake shearing on underflow.The micro pores structure and seepage flow in tailings bed before and after shearing are studied by CT and simulation approach to reveal the shearing enhancement mechanism of thickening process.The results shown that,the underflow concentration is increased from 61.4 wt%to 69.6 wt%by rake shearing in a pilot scale thickener,the porosity decreased from 46.48%to 37.46%.The entrapped water discharged from sticks structure more than sphere spaces.In items of seepage,after shearing,the seepage flow channel of tailings underflow is becoming longer,which caused the decreasing average flow rate decreases and absolute permeability.The absolute permeability is negatively correlated with tortuosity.The rake shearing can destroy the flocs structure;change the effective stress to increase the concentration.Higher underflow concentration improves the waste recycling and water recovery rate,especially for arid areas.展开更多
Hydroxypropyl methylcellulose (HPMC) and amphoteric polyacrylamide (ACPAM) were respectively used to prepare engineered cementitious composite (ECC) which exhibits strain-hardening behavior under uniaxial tensio...Hydroxypropyl methylcellulose (HPMC) and amphoteric polyacrylamide (ACPAM) were respectively used to prepare engineered cementitious composite (ECC) which exhibits strain-hardening behavior under uniaxial tension. The connections between cement paste structure and the performance of the composite in fresh and hardened state were investigated, aiming at achieving the desirable workability at a given solids concentration. The experimental results of viscosity and miCrostructure of cement pastes show that the intimate connections between flocculation groups lead to the growing increase in viscosity. The results of deformability and fiber dispersion demonstrate that fiber dispersion coefficient is a comprehensive index which can reflect the performance of deformability as well as uniformity. And the desirable fresh mixture can be achieved by optimizing the viscosity of cement paste. At last, the ductile strain-hardening performance of the ECC prepared with HPMC or ACPAM was investigated through uniaxial tensile test.展开更多
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金financially supported by the National Natural Science Foundation of China(Nos.52130404 and 52304121)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-112A1)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A 1515110161)the ANID(Chile)through Fondecyt project 1210610the Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)the CRHIAM project ANID/FONDAP/15130015 and ANID/FONDAP/1523A0001the Anillo project ANID/ACT210030。
文摘Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed.
基金the financial support provided by the National Natural Science Foundation of China Project (U21A20315,21978186)the Fund for Shanxi“1331 Project” (1331)。
文摘Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematically using a rheometer,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectrometer,oscillating tribometer,and 3D surface profiler measurements.The results showed that suitable synthetic conditions are two quenching cycles,and the synthetic temperature and time is 240℃for 12 h.The rheological analysis showed that thickener content and different proportions of the two PP molecular weights have a significant influence on the rheological properties of PP grease.High molecular weight PP(H-PP)has a stronger thickening ability than low molecular weight PP(L-PP).The higher the amount of H-PP in the fixed thickener content or the higher the thickener content with a specific proportion,the higher the viscoelasticity of PP grease.The tribological performance is related to the rheological properties.The proportion of two different molecular weight PPs in the thickener content should be appropriate;excessive H-PP content leads to lubrication failure.
基金The financial support from the National Natural Science Foundation of China(Grant No.52022112)the Fundamental Research Funds for the Central South University(Grant No.2023ZZTS0366)are acknowledged and appreciated.The authors are also grateful for the help from Dr.Ji Zhao of China University of Mining and Technology.
文摘Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles.
基金Project supported by the National Natural Science Foundation of China(Nos.12072183 and11872236)the Key Research Project of Zhejiang Laboratory(No.2021PE0AC02)。
文摘Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.
文摘Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process.Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid.In this study,population balance models were combined with computational fluid dynamics(CFD)for modeling the tailing thickener.Parameters such as feed flow rate,flocculant dosage,inlet solid percent and feedwell were investigated.CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh copper mine.Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined.Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model ofκ-ε.was used in the steady-state.Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel.The simulation results showed good agreement with the operational data.
基金Project(2016YFC0600709)supported by the National Key R&D Program of ChinaProjects(51574013,51774039)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-17-024A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.
文摘The phenomenological theory of sedimentation-thickening processes predicts the settling behavior of a flocculated suspension in dependence of two functions, the batch flux density function and the effective solid stress. These functions were determined using batch settling tests. The governing equations for sedimentation were then solved numerically for these functions and the predictions were compared to the experimental results from pilot scale thickener tests. Firstly, the continuous tests were performed in the plexiglass pilot thickener at different feed flow rates and discharge rates and the solid volume fraction of discharge, the bed height and the time were recorded for each condition. These tests were also simulated and it was observed that there is a good agreement between the results of continuous tests and the results of dynamic simulation. Secondly, the discontinuous tests were performed in the plexiglass pilot thickener at different feed flow rates with a discharge rate of zero. The bed formation rate was determined for each condition. These tests were also simulated and it was observed that there is a good agreement between the results of discontinuous tests and the results of simulation.
文摘Thickeners are important units for water recovery in various industries. In this study, a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD modeling. The population balance was used to describe the particle aggregation and breakup. In this population balance, 15 particle sizes categories were considered. The Eulerian-Eulerian approach with standard k-e turbulence model was applied to describe two phases of slurry flow in the thickener under steady-state condition. The simulation results have been compared with the experimental measurements to validate the accuracy of the CFD modeling. After checking the numerical results, the effect of important parameters such as, feed flow rate, solid percentage in the feed, and solid particle size on the thickener performance was studied. The thickener residence time distribution were obtained by the modeling and also compared with the experimental data. Finally, the effects of feedwell feeding on the average diameter of aggregate and turbulent intensity were evaluated.
文摘Alkali-soluble associative latex thickeners modified with hydrophobic long chain alkyl groups were prepared using common acrylics and varying amount of a functional monomer,ethoxylated behenyl methacrylate(BEM),through emulsion polymerization.It was found that the size of the emulsion particle became larger with addition of BEM.The light transmittance of the thickener latex sharply increased with pH varied from 6 to 7.The associative latex thickener manifested a higher viscosity when solids in the latex thickeners were kept at 0.5 wt%or higher,and the optimal amount of BEM was found to be around 2.5 wt%,or 0.16 mol%.All thickener latexes modified with BEM have better shearing resistance than the BEM-free thickener.
基金supported by the National Iranian Copper Industry Co.
文摘This study discussed the application of response surface methodology(RSM)and central composite rotatable design(CCRD)for modeling and optimization of the influence of some operating variables on the performance of a lab scale thickener for dewatering of tailing in the flotation circuit.Four thickener operating variables,namely feed flowrate,solid percent,flocculant dosage and feedwell height were changed during the tests based on CCRD.The ranges of values of the thickener variables used in the design were a feed flowrate of 9–21 L/min,solid percent of 8%–20%,flocculant dosage of 1.25–4.25 g/t and feedwell height of 16–26 cm.A total of 30 thickening tests were conducted using lab scale thickener on flotation tailing obtained from the Sarcheshmeh copper mine,Iran.The underflow solid percent and bed height were expressed as functions of four operating parameters of thickener.Predicted values were found to be in good agreement with experimental values(R2values of 0.992 and 0.997 for underflow solid percent and bed height,respectively).This study has shown that the RSM and CCRD could effciently be applied for the modeling of thickener for dewatering of flotation tailing.
基金the National Natural Science Foundation of China(No.51834001).
文摘The trouble-free and efficient operation of paste thickeners requires an optimal design and the cooperation of each component.When underflow discharging is suspended,alleviating the vast torque that the remaining solids within the thickeners may place on rakes mainly lies in the circulation unit.The mechanism of this unit was analyzed,and a mathematical model was developed to describe the changes in underflow solid content and yield stress.The key parameters of the circulation unit,namely,the height and flow rate,were varied to test its performance in the experiments with a self-designed laboratorial thickening system.Results show that the circulation unit is valid in reducing underflow solid fraction and yield stress to a reasonable extent,and the model could be used to describe its efficiency at different heights and flow rates.A suitable design and application of the circulation unit contributes to a cost-effective operation of paste thickeners.
基金Project(50876116)supported by the National Natural Science Foundation of China
文摘In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system.The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field.Optimization experiments on feed well and self-dilute system were also carried out,and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates' formation and improve the red mud settling speed.Furthermore,the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.
文摘Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.
基金Projects 50274068 Supported by National Natural Science Foundation of China and 20020290001 by Research Fund for Doctoral Program of HigherEducation
文摘To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelines and de- hydration. The chemical structure of the thickener is introduced in this paper and the production process is studied. The main processes include immersion, decomposition, dilution and addition of additives. In order to produce a thickener with high viscosity to suspend sands, key factors must be controlled in each process: the immersion time is 2 h; the mass fraction of formaldehyde is 0.01% and mass of NaCO3 accounts for 15% of dry material; the water temperature is 65 ℃ in summer and 72 ℃ in winter and the decomposition time is 2 h in the reaction; the densified decomposition so- lution should be diluted to 1% mass fraction; the additives of calcium ions and pH indicators must be added to the di- luted liquid; the mass fraction of CaCl2 is 0.048% and the pH value of the solution is 7.5. The thickener is a gel with three-dimensional network structure, a liquid with non-Newtonian behaviour and the characteristics of pseudo-plastic material, a solution with little resistance and the ability to revive its oral primary viscosity. It has been successfully ap- plied in Shendong Mines and has great value and wide-spread prospective use.
基金Project(51174032)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0225)supported by the Program for New Century Excellent Talents in University,ChinaProject(FRF-TP-09-001A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.
基金supported by National Key Research and Development Program of China(2019YFC0605300)the National Natural Science Foundation of China(61873299,61902022,61972028)+2 种基金Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(BK21BF002)Macao Science and Technology Development Fund under Macao Funding Scheme for Key R&D Projects(0025/2019/AKP)Macao Science and Technology Development Fund(0015/2020/AMJ)。
文摘It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.
基金This work was supported by funding from the National Natural Science Foundation of China Projects(51834001,51704094,U170420041)the China Postdoctoral Science Foundation(2020M672226)+2 种基金Program for Science&Technology Innovation Talents in Universities of Henan Province(19HASTIT047)Key Science Research Project in Universities of Henan Province(19B620001,20A620004)Henan Polytechnic University Science Fund for Distinguished Young Scholars(J2020-3).
文摘Higher concentration is beneficial for the Paste and Thickened Tailings(PTT)operation in metal mine.Partial paste thickeners are produced lower density underflow.Flocculated tailings are intended to form a water entrapped network structure in thickener,which is detrimental to underflow concentration.In this study,the continuous thickening experiment was carried out for ultra-fine tungsten tailings to study the influence of rake shearing on underflow.The micro pores structure and seepage flow in tailings bed before and after shearing are studied by CT and simulation approach to reveal the shearing enhancement mechanism of thickening process.The results shown that,the underflow concentration is increased from 61.4 wt%to 69.6 wt%by rake shearing in a pilot scale thickener,the porosity decreased from 46.48%to 37.46%.The entrapped water discharged from sticks structure more than sphere spaces.In items of seepage,after shearing,the seepage flow channel of tailings underflow is becoming longer,which caused the decreasing average flow rate decreases and absolute permeability.The absolute permeability is negatively correlated with tortuosity.The rake shearing can destroy the flocs structure;change the effective stress to increase the concentration.Higher underflow concentration improves the waste recycling and water recovery rate,especially for arid areas.
基金Funded by the National Natural Science Foundation of China(No.50978031)the Special Fund for Basic Scientific Research of Central Colleges(Chang'an University,No.CHD2011TD003,CHD2011ZY002,CHD2011JC018)
文摘Hydroxypropyl methylcellulose (HPMC) and amphoteric polyacrylamide (ACPAM) were respectively used to prepare engineered cementitious composite (ECC) which exhibits strain-hardening behavior under uniaxial tension. The connections between cement paste structure and the performance of the composite in fresh and hardened state were investigated, aiming at achieving the desirable workability at a given solids concentration. The experimental results of viscosity and miCrostructure of cement pastes show that the intimate connections between flocculation groups lead to the growing increase in viscosity. The results of deformability and fiber dispersion demonstrate that fiber dispersion coefficient is a comprehensive index which can reflect the performance of deformability as well as uniformity. And the desirable fresh mixture can be achieved by optimizing the viscosity of cement paste. At last, the ductile strain-hardening performance of the ECC prepared with HPMC or ACPAM was investigated through uniaxial tensile test.