Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-...The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.展开更多
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and...Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.展开更多
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A ...Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.展开更多
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to ob...This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.展开更多
Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The ...Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The case study describes a recorded heavy rockburst in the Czech part of the Upper Silesian Coal Basin, which occurred during longwall mining near the protective pillar. The artificial dividing of geological blocks and creation of mining protective pillars(shaft pillars, crosscut pillars etc.) is a dangerous task in light of rockbursts occurring mainly due to overstressing of remaining pillars. A simple model of this situation is presented. Natural and mining conditions are analysed and presented in detail as well as registered seismicity during longwall mining in the area. Recorded rockbursts in the area of interest are described and their causes discussed. Many rockbursts near protective pillars were recorded in this mining region. Methodical instructions for rockburst prevention in proximity of protective pillars as well as for gates driving were devised based on the evaluation of rockburst causes. The paper presents these principles for prevention.展开更多
The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of ...The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.展开更多
Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes ...Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.展开更多
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini...The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.展开更多
This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheologic...This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheological model capable of simulating tertiary creep, whereby two different pillar failure cases are investigated. The first case is of an isolated pillar in a deep hard rock underground mine and subjected to high stresses. The results show that pillar degradation is limited to the regions near the surface or the skin until two months after ore extraction. Afterwards degradation starts to extend deeper into the pillar, eventually leaving a highly-stressed pillar core due to stress transfer from the failed skin.Rockburst potential indices show that the risk increases exponentially at the core as time goes by. It is then demonstrated that the progressive skin degradation cannot be simulated with conventional strain-softening model assuming brittle failure. The parametric study with respect to the degree of heterogeneity reveals that heterogeneity is key to the occurrence of progressive skin degradation. The second case investigated in this study is pillar failure taking place in a very long period. Such failure becomes significantly important when assessing the risk for ground subsidence caused by pillar collapse in an abandoned mine. The analysis results demonstrate that the employed non-linear rheological model can simulate gradual skin degradation taking place over several hundred years. The percentage of damage zone volume within the pillar is merely 1% after a lapse of one days and increases to 50% after one hundred years, indicating a high risk for pillar collapse in the long term. The vertical displacements within the pillar also indicate the risk of subsidence. The proposed method is suitable for evaluating the risk of ground surface subsidence above an abandoned mine.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full ex...Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full extraction, and the first to be calibrated using an extensive database of longwall mining case histories.ALPS was followed by the analysis of retreat mining stability(ARMPS) and the analysis of multiple seam stability(AMSS). These methods incorporated other innovations, including the coal mine roof rating(CMRR), the Mark-Bieniawski pillar strength formula, and the pressure arch loading model. They also built upon ever larger case history databases and employed more sophisticated statistical methods.Today, these empirical methods are used in nearly every underground coal mine in the US. However,the piecemeal manner in which these methods have evolved resulted in some weaknesses. For example,in certain situations, it may not be obvious which program is the best to use. Other times the results from the different programs are not entirely consistent with each other. The programs have also not been updated for several years, and some changes were necessary to keep pace with new developments in mining practice. The analysis of coal pillar stability(ACPS) now integrates all three of the older software packages into a single pillar design framework. ACPS also incorporates the latest research findings in the field of pillar design, including an expanded multiple seam case history data base and a new method to evaluate room and pillar panels containing multiple rows of pillars left in place during pillar recovery.ACPS also includes updated guidance and warnings for users and features upgraded help files and graphics.展开更多
Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dyna...Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.展开更多
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金the National Natural Science Foundation of China(No.42377172)the National Key Research and Development Plan Project of China(No.2023YFC2907204).
文摘The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.
基金financially supported by the National Natural Science Foundation of China (52172192)the Young Top-Notch Talent of National Ten Thousand Talent Program (W03070054)。
文摘Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金Projects (2013BAB02B01, 2013BAB02B03) supported by the Key Projects in the National Science & Technoogy Pillar Program During the Twelfth Five-Year Plan PeriodProjects (51274055, 51204030, 51204031, 51109035) supported by the National Natural Science Foundation of ChinaProjects (N110301006, N110501001, N110401003) supportecd by the Fundamental Research Funds for the Central Unviersity, China
文摘Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
文摘This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.
基金the project of the Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy Use–Sustainability Programme of Czech Republic (No.LO1406)supported by a project for the long-term conceptual development of research organisations (No.RVO:68145535)
文摘Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The case study describes a recorded heavy rockburst in the Czech part of the Upper Silesian Coal Basin, which occurred during longwall mining near the protective pillar. The artificial dividing of geological blocks and creation of mining protective pillars(shaft pillars, crosscut pillars etc.) is a dangerous task in light of rockbursts occurring mainly due to overstressing of remaining pillars. A simple model of this situation is presented. Natural and mining conditions are analysed and presented in detail as well as registered seismicity during longwall mining in the area. Recorded rockbursts in the area of interest are described and their causes discussed. Many rockbursts near protective pillars were recorded in this mining region. Methodical instructions for rockburst prevention in proximity of protective pillars as well as for gates driving were devised based on the evaluation of rockburst causes. The paper presents these principles for prevention.
文摘The method of determining coal pillar strength equations from databases of stable and failed case histories is more than 50 years old and has been applied in different countries by different researchers in a range of mining situations. While common wisdom sensibly limits the use of the resultant pillar strength equations and methods to design scenarios that are consistent with the founding database, there are a number of examples where failures have occurred as a direct result of applying empirical design methods to coal pillar design problems that are inconsistent with the founding database. This paper explores the reasons why empirically derived coal pillar strength equations tend to be problem-specific and should be considered as providing no more than a pillar strength ‘‘index." These include the non-consideration of overburden horizontal stress within the mine stability problem, an inadequate definition of supercritical overburden behavior as it applies to standing coal pillars, and the non-consideration of overburden displacement and coal pillar strain limits. All of which combine to potentially complicate and confuse the back-analysis of coal pillar strength from failed cases. A modified coal pillar design representation and model are presented based on coal pillars acting to reinforce a horizontally stressed overburden, rather than suspend an otherwise unstable self-loaded overburden or section, the latter having been at the core of historical empirical studies into coal pillar strength and stability.
基金provided by the National Natural Science Foundation of China(No.51104191)the National Natural Science Foundation of China(No.51374258)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13043)
文摘Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.
基金Project(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities
文摘The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.
基金financially supported by the Natural Science and Engineering Research Council of Canada (NSERC) in partnership with Vale Ltd–Sudbury Operations, Canada, under the Collaborative Research and Development Program
文摘This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheological model capable of simulating tertiary creep, whereby two different pillar failure cases are investigated. The first case is of an isolated pillar in a deep hard rock underground mine and subjected to high stresses. The results show that pillar degradation is limited to the regions near the surface or the skin until two months after ore extraction. Afterwards degradation starts to extend deeper into the pillar, eventually leaving a highly-stressed pillar core due to stress transfer from the failed skin.Rockburst potential indices show that the risk increases exponentially at the core as time goes by. It is then demonstrated that the progressive skin degradation cannot be simulated with conventional strain-softening model assuming brittle failure. The parametric study with respect to the degree of heterogeneity reveals that heterogeneity is key to the occurrence of progressive skin degradation. The second case investigated in this study is pillar failure taking place in a very long period. Such failure becomes significantly important when assessing the risk for ground subsidence caused by pillar collapse in an abandoned mine. The analysis results demonstrate that the employed non-linear rheological model can simulate gradual skin degradation taking place over several hundred years. The percentage of damage zone volume within the pillar is merely 1% after a lapse of one days and increases to 50% after one hundred years, indicating a high risk for pillar collapse in the long term. The vertical displacements within the pillar also indicate the risk of subsidence. The proposed method is suitable for evaluating the risk of ground surface subsidence above an abandoned mine.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
文摘Thirty years ago, the analysis of longwall pillar stability(ALPS) inaugurated a new era in coal pillar design.ALPS was the first empirical pillar design technique to consider the abutment loads that arise from full extraction, and the first to be calibrated using an extensive database of longwall mining case histories.ALPS was followed by the analysis of retreat mining stability(ARMPS) and the analysis of multiple seam stability(AMSS). These methods incorporated other innovations, including the coal mine roof rating(CMRR), the Mark-Bieniawski pillar strength formula, and the pressure arch loading model. They also built upon ever larger case history databases and employed more sophisticated statistical methods.Today, these empirical methods are used in nearly every underground coal mine in the US. However,the piecemeal manner in which these methods have evolved resulted in some weaknesses. For example,in certain situations, it may not be obvious which program is the best to use. Other times the results from the different programs are not entirely consistent with each other. The programs have also not been updated for several years, and some changes were necessary to keep pace with new developments in mining practice. The analysis of coal pillar stability(ACPS) now integrates all three of the older software packages into a single pillar design framework. ACPS also incorporates the latest research findings in the field of pillar design, including an expanded multiple seam case history data base and a new method to evaluate room and pillar panels containing multiple rows of pillars left in place during pillar recovery.ACPS also includes updated guidance and warnings for users and features upgraded help files and graphics.
基金financially supported by the Key National Basic Research Program of China (Nos.2014CB260404 and 2015CB251602)the Key National Natural Science Foundation of China (No.U13612030)+1 种基金Shaanxi Innovation Team Program (No.2013KCT-16)the High Technology Development Program of Xin Jiang Municipality (No.201432102)
文摘Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.