期刊文献+
共找到1,317篇文章
< 1 2 66 >
每页显示 20 50 100
The interaction between a shaped charge jet and a single moving plate
1
作者 Andreas Helte Jonas Lundgren Jonas Candle 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of... Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet. 展开更多
关键词 Reactive armour Flyer plate shaped charge jet
下载PDF
Study on jet formation behavior and optimization of trunconical hypercumulation shaped charge structure 被引量:1
2
作者 Chao Ge Zhuojun Qu +2 位作者 Jin Wang Die Hu Yong Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期196-206,共11页
Combining the methods of theoretical,numerical and experimental,this research focuses on the jet formation behavior and optimization of trunconical hypercumulation shaped charge structure.With the three-stage division... Combining the methods of theoretical,numerical and experimental,this research focuses on the jet formation behavior and optimization of trunconical hypercumulation shaped charge structure.With the three-stage division,formation theory of trunconical hypercumulation shaped charge jet is established based on micro element method.By dimensional analysis,main control parameters are identified and their effect on jet formation are analyzed.Through numerical modelling and orthogonal optimization method,influence of the factors and their levels over the indicators of jet tip velocity and jet length as well as order of the significance of each factor and level are obtained.Penetration experiments of trunconical hypercumulation shaped charge based on the orthogonal optimization reveals its advantage over traditional conical shaped charge structure,and finally determines the optimal influence factor level combination.The research and results would provide useful guide for the design and application of trunconical hypercumulation shaped charge structure. 展开更多
关键词 STRUCTURE shaped charge
下载PDF
Experimental and numerical study on the influence of shaped charge liner cavity filing on jet penetration characteristics in steel targets
3
作者 Paweł Zochowski Radosław Warchoł 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期60-74,共15页
Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifi... Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets. 展开更多
关键词 shaped charge jet PG-7 grenade Armor steel target Finite element modeling Penetration process
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner
4
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 shaped charge Chemical vapor deposition TUNGSTEN Double-layer charge liner X-ray PENETRATION
下载PDF
Considering explosive charge shape and embedded depth in the design of concrete shelter thickness
5
作者 Yi Fan Li Chen +3 位作者 Jian Hong Runqing Yu Hengbo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期44-57,共14页
Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ... Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures. 展开更多
关键词 Blast resistance charge shape Embedded depth Structural design
下载PDF
Electron Shape Calculated for the Dual-Charge Dual-Mass Model
6
作者 Arlen Young 《Journal of Modern Physics》 CAS 2023年第3期198-207,共10页
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ... A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius. 展开更多
关键词 Electron shape Classical Electron Model Dual-charge Dual-Mass Model Electron Radius Negative Mass Electron Mass Inconsistency Electron charge Inconsistency Fine Structure Constant
下载PDF
Experimental investigation of penetration performance of shaped charge into concrete targets 被引量:12
7
作者 Cheng Wang Tianbao Ma Jianguo Ning 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期345-349,共5页
In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete target... In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets. 展开更多
关键词 shaped charge JPC Kinetic energy projectile Concrete PENETRATION
下载PDF
A comparative study for the impact performance of shaped charge JET on UHPC targets 被引量:6
8
作者 Hao Wu Feng Hu Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期506-518,共13页
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c... With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures. 展开更多
关键词 shaped charge JET Ultra-high PERFORMANCE concrete PENETRATION PERFORATION Numerical simulation
下载PDF
Study on orientation fracture blasting with shaped charge in rock 被引量:8
9
作者 Yong Luo Zhaowu Shen 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期193-198,共6页
On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were stud... On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock. 展开更多
关键词 explosive mechanics fracture mechanics orientation fracture blasting shaped charge model test
下载PDF
Numerical Simulation of the Shaped Charge Jet Velocity Effected by Warhead Shell 被引量:4
10
作者 韩峰 胡洋 张函 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期131-135,共5页
The numerical simulation for the process of shaped charge jet produced with the shell of explosives is performed by means of the ANSYS/LS-DYNA 3D software. The effect of warhead shell on shaped charge jet velocity has... The numerical simulation for the process of shaped charge jet produced with the shell of explosives is performed by means of the ANSYS/LS-DYNA 3D software. The effect of warhead shell on shaped charge jet velocity has been analyzed qualitatively in this paper. The numerical simulation results are creditable and in agreement well with that of the corresponding experiment. The research results show that the jet velocity of explosive with metal shell is higher than that without shell; when the shell thickness increases, jet' s head speed also increases; when the shell thickness increased to certain value, the jet velocity will not change any longer; with the same shell thickness, the bigger material density the higher jet's head velocity. 展开更多
关键词 SHELL shaped charge jets parameters numerical simulation
下载PDF
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space 被引量:6
11
作者 Hao Zhang Yuan-feng Zheng +3 位作者 Qing-bo Yu Chao Ge Cheng-hai Su Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期952-962,共11页
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3)... Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3).The reactive liner enhanced shaped charge utilizes reactive copper double-layered liner,which is composed of an inner copper liner and an outer reactive liner,while the reactive material liner is fabricated by PTFE/Al(Polytetrafluoroethylene/Aluminum)powders through cold-pressing and sintering.Static explosion experiments show that,compared with the shaped charge which utilizes copper liner,the penetration cavity diameter and spalling area of concrete by the novel shaped charge were enlarged to 2 times and 4 times,respectively.Meanwhile,the following reactive material had blast effect and produced significant overpressure inside the concrete closed space.Theoretical analysis indicates concrete strength and detonation pressure of reactive material both affect the penetration cavity diameter.To the blast behavior of reactive material inside the concrete space,developing TNT equivalence model and simulated on AUTODYN-3 D for analysis.Simulation results reproduced propagation process of the shock wave in concrete space,and revealed multi-peaks phenomenon of overpressure-time curves.Furthermore,the empirical relationship between the peak overpressure and relative distance for the shock wave of reactive material was proposed. 展开更多
关键词 shaped charge PENETRATION BLAST Concrete Numerical simulation
下载PDF
Shaped charge penetration into high-and ultrahigh-strength Steel-Fiber reactive powder concrete targets 被引量:6
12
作者 Qiang-qiang Xiao Zheng-xiang Huang +3 位作者 Xudong Zu Xin Jia Qi-feng Zhu Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期217-224,共8页
Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete(RPC) targets were performed in this paper.Results show that the variation of penetration depth and crater ... Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete(RPC) targets were performed in this paper.Results show that the variation of penetration depth and crater diameter with concrete strength is different from that of shaped charge penetration into normal strength concrete(NSC).The crater diameter of RPC is smaller than that of NSC penetrated by the shaped charge.The jet particles are strongly disturbed and hardly reach the crater bottom because they pass through the narrow channel formed by jet penetration into the RPC.The effects of radial drift velocity and gap effects of jet particles for a shaped charge penetration into RFC target are discussed.Moreover,a theoretical model is presented to describe the penetration of shaped charge into RPC target.As the concrete strength increases,the penetration resistance increases and the entrance crater diameter decreases.Given the drift velocity and narrow crater channel,the low-velocity jet particles can hardly reach the crater bottom to increase the penetration depth.Moreover,the narrow channel has a stronger interference to the jet particles with increasing concrete strength;hence,the gap effects must be considered.The drift velocity and gap effects,which are the same as penetration resistance,also have significant effects during the process of shaped charge penetration into ultrahigh-strength concrete,The crater profiles are calculated through a theoretical model,and the results are in good agreement with the experiments. 展开更多
关键词 shaped charge REACTIVE powder concrete target PENETRATION RADIAL DRIFT velocity Gap effects
下载PDF
Bore-center annular shaped charges with different liner materials penetrating into steel targets 被引量:2
13
作者 Wen-long Xu Cheng Wang +1 位作者 Jian-ming Yuan Tao Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期796-801,共6页
The bore-center annular shaped charge(BCASC)is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges.In this paper,the influence of three liner materials,... The bore-center annular shaped charge(BCASC)is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges.In this paper,the influence of three liner materials,i.e.molybdenum,nickel and copper,on BCASC formation and penetrating into steel targets was investigated by experiment and numerical simulation.The simulation results were well consistent with the experimental results.This study showed that,at 0.50D standoff distance,the axial velocity of the molybdenum projectile was lower than that of the nickel and copper projectiles.The nickel and copper projectiles had almost the same head velocity.The absolute values of the radial velocity of the molybdenum projectile head was lower than that of the nickel and copper projectiles.However,at 0.75D standoff distance,the absolute values of the radial velocity of the molybdenum projectile head became much greater than that of the nickel and copper projectile heads.The projectile formed by BCASC with the molybdenum liner had the highest penetration depth of 61.5 mm,which was 10.0%and 21.3%higher than that generated by the copper and nickel projectiles. 展开更多
关键词 ANNULAR shaped charge LINER material Formation Numerical simulation
下载PDF
Research on the Application of Explosive Network in the Shaped Charge Warhead 被引量:2
14
作者 徐立新 刘建荣 +3 位作者 赵广波 于成大 李昕 张国伟 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期204-209,共6页
With respect to the problems of that the shaped charge warhead currently uses a cover method to improve the penetration power, a method using an explosive network technology as the detonation mode of shaped charge war... With respect to the problems of that the shaped charge warhead currently uses a cover method to improve the penetration power, a method using an explosive network technology as the detonation mode of shaped charge warhead is proposed. In the context of some shaped charge warhead, a synchronous explosive network prototype is designed according to some charge structure parameters, such as the liner and main grain. From the performance comparison test, it can be known that the explosive network not only stably detonates, but also largely improves the penetration power and stability. Experimental results show that explosive network technology is an effective method for improving the penetration power. The results lay a solid foundation for the engineering application of the technology in the shaped charge warhead. 展开更多
关键词 explosive mechanics explosive network shaped charge LINER WARHEAD
下载PDF
Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner 被引量:3
15
作者 Huan-Guo Guo Yuan-feng Zheng +3 位作者 Suo He Qing-Bo Yu Chao Ge Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1578-1588,共11页
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/... In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry(DSC),Thermo-gravimetry(TG), and Xray Diffraction(XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials. 展开更多
关键词 Reactive materials shaped charge Reactive liner Jet formation Penetration behavior
下载PDF
Influence of a liquid-filled compartment structure on the incoming shaped charge jet stability 被引量:2
16
作者 X.D.Zu Z.X.Huang +2 位作者 Z.W.Guan X.C.Yin Y.M.Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期571-582,共12页
Liquid-filled compartment structure consists of a bulk steel plate with matrix blind holes which are filled with liquid and a steel front plate to seal up the liquid with rings and bolts.The liquid-filled compartment ... Liquid-filled compartment structure consists of a bulk steel plate with matrix blind holes which are filled with liquid and a steel front plate to seal up the liquid with rings and bolts.The liquid-filled compartment structure can resist the shaped charge warhead effectively.This paper presents experimental and theoretical investigations of the penetration ability of the residual shaped charge jet emerging from the liquid-filled compartment structure after the penetration process at different impact angles.On the basis of shock wave propagation theory,the influence of the liquid-filled compartment structure on jet stability is analysed.The interferences of the liquid backflow caused by a reflected shock wave and a back plate on jet stability under different impact angles are also examined.In addition,the range of the disturbed velocity segments of the jet at different impact angles and the penetration ability of the residual jet are obtained.A theoretical model is validated against the experimental penetration depths. 展开更多
关键词 Compartment structure shaped charge jet Shock wave DISTURBANCE STABILITY
下载PDF
Study on liquid-filled structure target with shaped charge vertical penetration 被引量:1
17
作者 Min Guo Xu-dong Zu +1 位作者 Xiao-jun Shen Zheng-xiang Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期861-867,共7页
Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired... Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet. 展开更多
关键词 shaped charge Liquid-filled structure target Disturbed jet Escape jet
下载PDF
Overdriven Detonation and Its Application in Shaped Charges 被引量:1
18
作者 Tariq Hussain Yan Liu Fenglei Huang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期9-15,共7页
Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge cons... Overdriven detonation(ODD)in high explosives can be generated by Mach reflection of conical detonation waves propagating quasi-steadily in a co-axial double layer cylindrical charge.The inner core of the charge consists of lower detonation velocity explosive with higher detonation velocity explosive for the outer core.The calculated pressures and detonation velocities in the ODD regime are compared with available results in the literature.The application of this technique to design a double layer shaped charge(DLSC)is numerically studied.It was discovered that the use of lower density-lower detonation velocity explosive in the inner core of DLSC can also yield similar results to those obtained with high density lower detonation velocity explosive.By analyzing previous experimental results and comparing with present simulations,it is demonstrated that ordinary shaped charges have some advantages over DLSC under certain conditions. 展开更多
关键词 overdriven detonation double-layer shaped charge jet formation
下载PDF
Influence of shaped charge structure parameters on the formation of linear explosively formed projectiles 被引量:1
19
作者 Tian-bao Ma Jing Liu Qi Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1863-1874,共12页
The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a specia... The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results. 展开更多
关键词 LEFP Numerical simulation shaped charge Structure optimization
下载PDF
Structure Design of Shaped Charge for Requirements of Concrete Crater Diameter
20
作者 郭坚 何勇 +2 位作者 肖强强 黄正祥 刘蓓蓓 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期681-686,共6页
When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds... When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements. 展开更多
关键词 shaped charge crater diameter structure design
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部