We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for pra...We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.展开更多
Over the past decades,a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes,such as ecohyd...Over the past decades,a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes,such as ecohydrology,global hydrology,sociohydrology,supply management,demand management,and integrated water resources management(IWRM).At the same time,rapid advancements have also been taking place in tracing,mapping,remote sensing,machine learning,and modelling technologies in hydrological research.Despite those programs and advancements,a water crisis is intensifying globally.The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs)at multiple spatial scales.Since the watershed is the natural unit for water resources management,watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management,and then discusses issues and challenges facing the global water community.Subsequently,it describes the core components of watershed science:(1)hydrological analysis;(2)water-operation policies;(3)governance;(4)management and feedback.The framework takes into account water availability,water uses,and water quality;explicitly focuses on the storage,fluxes,and quality of the hydrological cycle;defines appropriate local water resource thresholds through incorporating the planetary boundary framework;and identifies specific actionable measures for water resources management.It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.展开更多
Based on reviewing the problems in limnology and watershed sciences in meeting the national demands and the development of theories and methodology, this paper proposed some challeng-ing topics to the sciences, coveri...Based on reviewing the problems in limnology and watershed sciences in meeting the national demands and the development of theories and methodology, this paper proposed some challeng-ing topics to the sciences, covering the process of lake evolution and the quantitative analysis of hu-man impacts, in-lake nutrient cycling an biogeo-chemical process, the process and mechanisms of material flow in lake-watershed system, digital watershed and the modeling of the surface pro-cess of lake-watershed, and ecosystem health and scientific management of lake- watershed.展开更多
基金supported by Prof.Chen Fahurepresented by this paper was funded by the Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91225302,91425303)the Cross-disciplinary Collaborative Teams Program for Science,Technology,and Innovation of the Chinese Academy of Sciences
文摘We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030501,41530752,and 91125010)the Scherer Endowment Fund of Department of Geography,Western Michigan University。
文摘Over the past decades,a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes,such as ecohydrology,global hydrology,sociohydrology,supply management,demand management,and integrated water resources management(IWRM).At the same time,rapid advancements have also been taking place in tracing,mapping,remote sensing,machine learning,and modelling technologies in hydrological research.Despite those programs and advancements,a water crisis is intensifying globally.The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs)at multiple spatial scales.Since the watershed is the natural unit for water resources management,watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management,and then discusses issues and challenges facing the global water community.Subsequently,it describes the core components of watershed science:(1)hydrological analysis;(2)water-operation policies;(3)governance;(4)management and feedback.The framework takes into account water availability,water uses,and water quality;explicitly focuses on the storage,fluxes,and quality of the hydrological cycle;defines appropriate local water resource thresholds through incorporating the planetary boundary framework;and identifies specific actionable measures for water resources management.It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.
文摘Based on reviewing the problems in limnology and watershed sciences in meeting the national demands and the development of theories and methodology, this paper proposed some challeng-ing topics to the sciences, covering the process of lake evolution and the quantitative analysis of hu-man impacts, in-lake nutrient cycling an biogeo-chemical process, the process and mechanisms of material flow in lake-watershed system, digital watershed and the modeling of the surface pro-cess of lake-watershed, and ecosystem health and scientific management of lake- watershed.