We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR)and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear ...We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR)and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear receive mode andπ/4 compact polarimetric mode.Relevant data from the RADARSAT-2 fully polarimetric SAR on the C-band were used to obtain the compact polarimetric SAR images,and a polarimetric SAR wave retrieval algorithm was used to verify the sea surface wave measurements.Using the data and algorithm,there is no need to estimate complex hydrodynamic modulation transfer functions,even at large radar incidence angles.First,the radar backscattering cross-sections and backscattering cross-section of the radar linearly polarized with any polarization orientation angle were calculated in the two compact polarimetric SAR modes.Then,the wave slopes along the azimuth direction and the range direction were calculated directly using CP SAR data.Finally,we obtained the slope spectrum of the wave from the estimated wave slopes along azimuth and range directions.The wave parameters extracted from the synthetic wave slope spectrum were compared with those obtained from buoy observations of the National Data Buoy Center,verifying a suitable agreement.展开更多
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea...Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.展开更多
A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacycl...A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.展开更多
The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave...The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.展开更多
To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are...To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are collocated. Buoy wind speed is converted into neutral wind at 10 m height. Then, ASCAT data are com- pared with the buoy data for the wind speed and direction. Subsequently, the errors between the ASCAT and the buoy wind as a function of each wave parameter are used to analyze the wave effects. Wave param- eters include dominant wave period (dpd), significant wave height (swh), average wave period (apd) and the angle between the dominant wave direction (dwd) and the wind direction. Collocated data are divided into sub-datasets according to the different intervals of each wave parameter. A root mean square error (RMSE) for the wind speed and a mean absolute error (MAE) for the wind direction are calculated from the sub-datasets, which are considered as the function of wave parameters. Finally, optimal wave conditions on wind retrieved from the ASCAT are determined based on the error analyses. The results show the ocean wave parameters have correlative relationships with the RMSE of the retrieved wind speed and the MAE of the retrieved wind direction. The optimal wave conditions are presented in terms of dpd, swh, apd and angle.展开更多
The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In cont...The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.展开更多
The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave spectra data are...The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave spectra data are compared with one-dimensional (1D) wave spectra of 55 co-located moored buoy observations in the northern Pacific Ocean. The ASAR wave spectra data are firstly quality control filtered and spatio-temporal matched with buoy data. The comparisons are then performed in terms of 1D wave spectra, significant wave height (SWH) and mean wave period (MWP) in different spatio-temporal offsets respectively. SWH comparison results show the evident dependence of SWH biases on wind speed and the ASAR SWH saturation effect. The ASAR wave spectra tend to underestimate SWH at high wind speeds and overestimate SWH at low wind speeds. MWP comparison results show that MWP has a systematic bias and therefore it should be bias-modified before used. The comparisons of 1D wave spectra show that both wave spectra agree better at low frequencies than at high frequencies, which indicates the ASAR data cannot resolve the high frequency waves.展开更多
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input...Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.展开更多
A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave he...A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave height acquired from the model with different packages have been performed based on wave observation radar and HY-2 altimetry significant wave height data through five experiments in the South China Sea domain spanning latitudes of 0°–35°N and longitudes of 100°–135°E. The sensitivity of the wind speed correction parameter in the TC96 package also has been analyzed. From the results, the model is unable to dissipate the wave energy efficiently during a swell propagation with either source packages. It is found that TC96 formulation with the "effective wind speed" strategy performs better than WAM3 and WAM4 formulations. The wind speed correction parameter in the TC96 source package is very sensitive and needs to be calibrated and selected before the WW3 model can be applied to a specific region.展开更多
For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint ...For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.展开更多
Having estimates of wave climate parameters and extreme values play important roles for a variety of different societal activities,such as coastal management,design of inshore and offshore structures,marine transport,...Having estimates of wave climate parameters and extreme values play important roles for a variety of different societal activities,such as coastal management,design of inshore and offshore structures,marine transport,coastal recreational activities,fisheries,etc.This study investigates the efficiency of a state-of-the-art spatial neutral gas clustering method in the classification of wind/wave data and the evaluation of extreme values of significant wave heights(Hs),mean wave direction(MWD)and mean wave periods(T0)for two 39-year time periods;from 1979 to 2017 for the present climate,and from 2060 to 2098,for a future climate change scenario in the Northwest Atlantic.These data were constructed by application of a numerical model,WAVEWATCHIII TM(hereafter,WW3),to simulate the wave climate for the study area for both present and future climates.Data from the model was extracted for the wave climate,in terms of the wave parameters,specifically Hs,MWD and T0,which were analyzed and compared for winter and summer seasons,for present and future climates.In order to estimate extreme values in the study area,a Natural Gas(hereafter,NG)clustering method was applied,separate clusters were identified,and corresponding centroid points were determined.To analyze data at each centroid point,time series of wave parameters were extracted,and using standard stochastic models,such as Gumbel,exponential and Weibull distribution functions,the extreme values for 50 and 100-year return periods were estimated.Thus,the impacts of climate change on wave regimes and extreme values can be specified.展开更多
The integral expression for acoustic field due to a point source in shallow waterwhile sediment is either a liquid or a solid is derived. The synthetic full waveforms are simulatedusing real axis integration and FFF m...The integral expression for acoustic field due to a point source in shallow waterwhile sediment is either a liquid or a solid is derived. The synthetic full waveforms are simulatedusing real axis integration and FFF method. The effects of the seabed sediment parametersand center frequency of the source on the low frequency acoustic wave propagation in shallowwater are investigated. The conclusion is that the wave groups received in far field are thoseof the mode waves of the source center frequency. The possibility for inversely deducing thecompressional and shear sound speeds of sediment using the least square optimum through themeasured group velocities of a selected mode at different frequencies is discussed.展开更多
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop...By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.展开更多
In this paper,the Particle Swarm Optimization(PSO)algorithm is employed to deal with the Adaptive Network based Fuzzy Inference System(ANFIS)model drawbacks in prediction of wind-driven waves.In the ANFIS model select...In this paper,the Particle Swarm Optimization(PSO)algorithm is employed to deal with the Adaptive Network based Fuzzy Inference System(ANFIS)model drawbacks in prediction of wind-driven waves.In the ANFIS model selection of fuzzy IF-THEN rules structure and numbers is not an automatic process.In addition,in the ANFIS model extraction of fuzzy antecedent and consequent parameters is a gradient-based method which makes the answer susceptible to entrap in local optima.To cope with the ANFIS deficiencies,herein the PSO algorithm is coupled with the wave predictor FIS models in three viewpoints to optimize fuzzy subtractive clustering parameters,i.e.radii of clustering and quash factor,and the antecedent and consequent parameter of fuzzy IF-THEN rules.At first viewpoint,two PSO algorithms are used to optimize fuzzy subtractive clustering parameters and fuzzy IF-THEN rule parameters.In the second viewpoint,a PSO algorithm is used to optimize subtractive clustering parameters while the ANFIS model is used to tune the fuzzy IF-THEN rule parameters.In the third viewpoint,only a PSO algorithm is used to optimize the subtractive clustering parameters along with fuzzy IF-THEN rule parameters.Gathered data sets by National Data Buoy Center(NDBC)at Lake Michigan are used to evaluate the developed models for prediction of wave parameters including significant wave height and peak spectral period.Results indicate the efficiency of PSO algorithm to improve the ANFIS model accuracy.展开更多
Wind, the result of earth rotation and other processes,inaugurate the phenomenon of oceanic internal waves(OIWs), including driving turbulence, affecting nutrient and biomass distribution, and resuspending sediment....Wind, the result of earth rotation and other processes,inaugurate the phenomenon of oceanic internal waves(OIWs), including driving turbulence, affecting nutrient and biomass distribution, and resuspending sediment. Therefore, a good understanding to OIWs' characters becomes a vital component to enhance its monitoring and utilization. The parameter inversion was conducted in the article for the OIW based on the empirical mode decomposition(EMD) method. The experimental data, the advanced synthetic aperture radar(ASAR) image, was captured in Dongsha Islands surrounding area on July 22, 2011. Considering the formation mechanism of internal waves, two important issues in the EMD method-the curve fitting and end effects-were studied. After comparing different algorithms, the cubic spline interpolation(CSI) was used for curve fitting and the boundary full-wave(BFW) method was applied to inhibit the end effects. Used this inversion method, the internal wave signal was extracted from the ASAR image, the distance of the internal wave between peak and trough was calculated, and the half-width of soliton was obtained as well. In addition, the inversion result is consistent with the previous experimental findings, which indicates the effectiveness of our algorithm.展开更多
The wave transformation over slope topography is widely studied,but most of studies are for common coastal slopes.This paper presents an experimental study of 2-D regular and irregular wave transformations on a simpli...The wave transformation over slope topography is widely studied,but most of studies are for common coastal slopes.This paper presents an experimental study of 2-D regular and irregular wave transformations on a simplified coral reef with a steep slope of 1:5 and a horizontal reef flat,focusing on the characteristics of the waves that break on the reef flat.The analyzed results show that the estimates of the wave breaking made by using the well-known previous formulae do not agree completely with the experimental results.When the waves break on a reef flat,the relative breaking wave height(H/d)b is related to the incident deep-water wave steepness and the relative water depth db/L0.Hence,a new criterion for breaking waves on a reef flat is proposed.Furthermore,in view of the fact that the local Ursell number is commonly used to parameterize the wave nonlinearity,the relationships among the skewness,the asymmetry,and the local Ursell number are also presented.Experimental data confirm that when the Ursell number is greater than 30,the absolute values of the skewness and the asymmetry on a reef flat are greater than those on a steep slope.展开更多
基金The National Natural Science Foundation of China under contract Nos 41620104003 and 42027805the National Key Research and Development Program under contract No.2016YFC1401002。
文摘We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR)and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear receive mode andπ/4 compact polarimetric mode.Relevant data from the RADARSAT-2 fully polarimetric SAR on the C-band were used to obtain the compact polarimetric SAR images,and a polarimetric SAR wave retrieval algorithm was used to verify the sea surface wave measurements.Using the data and algorithm,there is no need to estimate complex hydrodynamic modulation transfer functions,even at large radar incidence angles.First,the radar backscattering cross-sections and backscattering cross-section of the radar linearly polarized with any polarization orientation angle were calculated in the two compact polarimetric SAR modes.Then,the wave slopes along the azimuth direction and the range direction were calculated directly using CP SAR data.Finally,we obtained the slope spectrum of the wave from the estimated wave slopes along azimuth and range directions.The wave parameters extracted from the synthetic wave slope spectrum were compared with those obtained from buoy observations of the National Data Buoy Center,verifying a suitable agreement.
基金The project supported by Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025+1 种基金the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities under contract No.23CX04042A.
文摘Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.
基金financed by the Military University of Technology under research project UGB 2024the Ludwig-Maximilian University of Munich (LMU)。
文摘A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,41406017,U1406401,41421005)
文摘The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.
基金The National Natural Science Youth Foundation of China under contract Nos 41306191 and 41306192the National High Tech-nology Development Program(863 Program) of China under contract No.2013AA09A505the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China under contract No.JG1317
文摘To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are collocated. Buoy wind speed is converted into neutral wind at 10 m height. Then, ASCAT data are com- pared with the buoy data for the wind speed and direction. Subsequently, the errors between the ASCAT and the buoy wind as a function of each wave parameter are used to analyze the wave effects. Wave param- eters include dominant wave period (dpd), significant wave height (swh), average wave period (apd) and the angle between the dominant wave direction (dwd) and the wind direction. Collocated data are divided into sub-datasets according to the different intervals of each wave parameter. A root mean square error (RMSE) for the wind speed and a mean absolute error (MAE) for the wind direction are calculated from the sub-datasets, which are considered as the function of wave parameters. Finally, optimal wave conditions on wind retrieved from the ASCAT are determined based on the error analyses. The results show the ocean wave parameters have correlative relationships with the RMSE of the retrieved wind speed and the MAE of the retrieved wind direction. The optimal wave conditions are presented in terms of dpd, swh, apd and angle.
基金supported by Chinese Ministry of Science and Technology(2006CB403600, 2006CB403500, 2006BAB18B03, and 2006BAB18B05)Chinese Meteorological Administration [GYHY(QX)2007-6-5]+2 种基金the Centurial Program sponsored by the Chinese Academy of Sciences in ChinaNational Science Foundation Committee (40233032) in Chinasupported by N0001409WR20059 sponsored by the Office of Naval Research (ONR), USA
文摘The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces.
基金Supported by the Special Fund for Marine Commonweal Scientific Research of China (No.200705027)
文摘The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave spectra data are compared with one-dimensional (1D) wave spectra of 55 co-located moored buoy observations in the northern Pacific Ocean. The ASAR wave spectra data are firstly quality control filtered and spatio-temporal matched with buoy data. The comparisons are then performed in terms of 1D wave spectra, significant wave height (SWH) and mean wave period (MWP) in different spatio-temporal offsets respectively. SWH comparison results show the evident dependence of SWH biases on wind speed and the ASAR SWH saturation effect. The ASAR wave spectra tend to underestimate SWH at high wind speeds and overestimate SWH at low wind speeds. MWP comparison results show that MWP has a systematic bias and therefore it should be bias-modified before used. The comparisons of 1D wave spectra show that both wave spectra agree better at low frequencies than at high frequencies, which indicates the ASAR data cannot resolve the high frequency waves.
基金supported by the National Natural Science Foundation of China (51279186)the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering,Ocean University of China (201362045)
文摘Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.
基金The National Natural Science Foundation of China under contract No.41406007the National Key Research and Development Project of China under contract No.2016YFC1401800+1 种基金the National Natural Science Foundation of China under contract No.41306002the Fundamental Research Funds for the Central Universities of China under contract Nos 16CX02011A and 15CX08011A
文摘A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave height acquired from the model with different packages have been performed based on wave observation radar and HY-2 altimetry significant wave height data through five experiments in the South China Sea domain spanning latitudes of 0°–35°N and longitudes of 100°–135°E. The sensitivity of the wind speed correction parameter in the TC96 package also has been analyzed. From the results, the model is unable to dissipate the wave energy efficiently during a swell propagation with either source packages. It is found that TC96 formulation with the "effective wind speed" strategy performs better than WAM3 and WAM4 formulations. The wind speed correction parameter in the TC96 source package is very sensitive and needs to be calibrated and selected before the WW3 model can be applied to a specific region.
文摘For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.
文摘Having estimates of wave climate parameters and extreme values play important roles for a variety of different societal activities,such as coastal management,design of inshore and offshore structures,marine transport,coastal recreational activities,fisheries,etc.This study investigates the efficiency of a state-of-the-art spatial neutral gas clustering method in the classification of wind/wave data and the evaluation of extreme values of significant wave heights(Hs),mean wave direction(MWD)and mean wave periods(T0)for two 39-year time periods;from 1979 to 2017 for the present climate,and from 2060 to 2098,for a future climate change scenario in the Northwest Atlantic.These data were constructed by application of a numerical model,WAVEWATCHIII TM(hereafter,WW3),to simulate the wave climate for the study area for both present and future climates.Data from the model was extracted for the wave climate,in terms of the wave parameters,specifically Hs,MWD and T0,which were analyzed and compared for winter and summer seasons,for present and future climates.In order to estimate extreme values in the study area,a Natural Gas(hereafter,NG)clustering method was applied,separate clusters were identified,and corresponding centroid points were determined.To analyze data at each centroid point,time series of wave parameters were extracted,and using standard stochastic models,such as Gumbel,exponential and Weibull distribution functions,the extreme values for 50 and 100-year return periods were estimated.Thus,the impacts of climate change on wave regimes and extreme values can be specified.
文摘The integral expression for acoustic field due to a point source in shallow waterwhile sediment is either a liquid or a solid is derived. The synthetic full waveforms are simulatedusing real axis integration and FFF method. The effects of the seabed sediment parametersand center frequency of the source on the low frequency acoustic wave propagation in shallowwater are investigated. The conclusion is that the wave groups received in far field are thoseof the mode waves of the source center frequency. The possibility for inversely deducing thecompressional and shear sound speeds of sediment using the least square optimum through themeasured group velocities of a selected mode at different frequencies is discussed.
基金Supported by the National Key Technologies Research&Development Program(2017YFC0804607)the National Key Basic Research Development Plan(973 Proect)(2014CB047000)
文摘By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.
文摘In this paper,the Particle Swarm Optimization(PSO)algorithm is employed to deal with the Adaptive Network based Fuzzy Inference System(ANFIS)model drawbacks in prediction of wind-driven waves.In the ANFIS model selection of fuzzy IF-THEN rules structure and numbers is not an automatic process.In addition,in the ANFIS model extraction of fuzzy antecedent and consequent parameters is a gradient-based method which makes the answer susceptible to entrap in local optima.To cope with the ANFIS deficiencies,herein the PSO algorithm is coupled with the wave predictor FIS models in three viewpoints to optimize fuzzy subtractive clustering parameters,i.e.radii of clustering and quash factor,and the antecedent and consequent parameter of fuzzy IF-THEN rules.At first viewpoint,two PSO algorithms are used to optimize fuzzy subtractive clustering parameters and fuzzy IF-THEN rule parameters.In the second viewpoint,a PSO algorithm is used to optimize subtractive clustering parameters while the ANFIS model is used to tune the fuzzy IF-THEN rule parameters.In the third viewpoint,only a PSO algorithm is used to optimize the subtractive clustering parameters along with fuzzy IF-THEN rule parameters.Gathered data sets by National Data Buoy Center(NDBC)at Lake Michigan are used to evaluate the developed models for prediction of wave parameters including significant wave height and peak spectral period.Results indicate the efficiency of PSO algorithm to improve the ANFIS model accuracy.
基金supported by the National Natural Science Foundation of China (61072145, 11401031, 61471406)the Beijing Excellent Talent Training Project (2013D005007000003)
文摘Wind, the result of earth rotation and other processes,inaugurate the phenomenon of oceanic internal waves(OIWs), including driving turbulence, affecting nutrient and biomass distribution, and resuspending sediment. Therefore, a good understanding to OIWs' characters becomes a vital component to enhance its monitoring and utilization. The parameter inversion was conducted in the article for the OIW based on the empirical mode decomposition(EMD) method. The experimental data, the advanced synthetic aperture radar(ASAR) image, was captured in Dongsha Islands surrounding area on July 22, 2011. Considering the formation mechanism of internal waves, two important issues in the EMD method-the curve fitting and end effects-were studied. After comparing different algorithms, the cubic spline interpolation(CSI) was used for curve fitting and the boundary full-wave(BFW) method was applied to inhibit the end effects. Used this inversion method, the internal wave signal was extracted from the ASAR image, the distance of the internal wave between peak and trough was calculated, and the half-width of soliton was obtained as well. In addition, the inversion result is consistent with the previous experimental findings, which indicates the effectiveness of our algorithm.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB036101)the National Natural Science Foundation of China(Grant Nos.51879037,51739010).
文摘The wave transformation over slope topography is widely studied,but most of studies are for common coastal slopes.This paper presents an experimental study of 2-D regular and irregular wave transformations on a simplified coral reef with a steep slope of 1:5 and a horizontal reef flat,focusing on the characteristics of the waves that break on the reef flat.The analyzed results show that the estimates of the wave breaking made by using the well-known previous formulae do not agree completely with the experimental results.When the waves break on a reef flat,the relative breaking wave height(H/d)b is related to the incident deep-water wave steepness and the relative water depth db/L0.Hence,a new criterion for breaking waves on a reef flat is proposed.Furthermore,in view of the fact that the local Ursell number is commonly used to parameterize the wave nonlinearity,the relationships among the skewness,the asymmetry,and the local Ursell number are also presented.Experimental data confirm that when the Ursell number is greater than 30,the absolute values of the skewness and the asymmetry on a reef flat are greater than those on a steep slope.