To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Four...To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different fi:equencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.展开更多
基金Acknowledgements This work was financially supported by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing, the National Natural Science Foundation of China (Grant Nos. 51075420 and 61 371096), and the Natural Science Foundation of Chongqing Science & Technology Commission (CQ CSTC) (No. 2010BB2409).
文摘To solve the large noise problem for the low- precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different fi:equencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.