The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ...The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher.展开更多
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural...In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.展开更多
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei...The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.展开更多
Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivat...Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.展开更多
Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noi...Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noise on power signals in the data acquisition process of the railway centralized signaling monitoring(CSM)system,this study utilizes wavelet threshold denoising to eliminate interference.The results show that the accuracy of fault diagnosis can be improved by 4.4% after denoising the power signals.Then in order to attain a lighter weight and shorten the running time of the diagnosis model,Mallat wavelet decomposition and artificial immune algorithm are applied to RPM fault diagnosis.Finally,voluminous experiments using veritable power signals collected from CSM are introduced,which show that combining these methods can procure higher precision of RPMs and curtail fault diagnosis time.This substantiates the validity and feasibility of the presented approach.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51874350)the National Natural Science Foundation of China(Grant No.52304127)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts200)the Science Foundation of the Fuzhou University(Grant No.511229)Fuzhou University Testing Fund of Precious Apparatus(Grant No.2024T040).
文摘The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher.
基金supported by the Key Item of Science and Technology Program of Xiangtan City,Hunan Province,China under Grant No. ZJ20071008
文摘In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.
基金Supported by the National Natural Science Foundation of China(No.62033011)Science and Technology Project of Hebei Province(No.216Z1704G,No.20310401D)。
文摘The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020303).
文摘Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%.
基金supported by grants from the National Natural Science Foundation of China(Grant No.61661027)the Project Fund of China National Railway Group Co.,Ltd(Grant No.N2022G012).
文摘Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noise on power signals in the data acquisition process of the railway centralized signaling monitoring(CSM)system,this study utilizes wavelet threshold denoising to eliminate interference.The results show that the accuracy of fault diagnosis can be improved by 4.4% after denoising the power signals.Then in order to attain a lighter weight and shorten the running time of the diagnosis model,Mallat wavelet decomposition and artificial immune algorithm are applied to RPM fault diagnosis.Finally,voluminous experiments using veritable power signals collected from CSM are introduced,which show that combining these methods can procure higher precision of RPMs and curtail fault diagnosis time.This substantiates the validity and feasibility of the presented approach.