期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
1
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal denoising wavelet threshold denoising black widow optimization algorithm
下载PDF
New Wavelet Threshold Denoising Method in Noisy Blind Source Separation 被引量:1
2
作者 Xuan-Sen He Tian-Jiao Zhao 《Journal of Electronic Science and Technology》 CAS 2010年第4期356-361,共6页
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural... In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision. 展开更多
关键词 Bias removal blind source separation gradient algorithm wavelet threshold denoising.
下载PDF
基于EEMD、相关系数、排列熵和小波阈值去噪的新型水下声学信号去噪方法
3
作者 张玉燕 杨志霞 +1 位作者 杜晓莉 罗小元 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期222-237,共16页
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei... The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal. 展开更多
关键词 Ensemble empirical mode decomposition Correlation coefficient Permutation entropy wavelet threshold denoising Underwater acoustic signal denoising
下载PDF
Smooth pulse recovery based on hybrid wavelet threshold denoising and first derivative adaptive smoothing filter 被引量:3
4
作者 Xinlei Qian Wei Fan +1 位作者 Xinghua Lu Xiaochao Wang 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第2期17-25,共9页
Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivat... Based on the pulse-shaping unit in the front end of high-power laser facilities,we propose a new hybrid scheme in a closed-loop control system including wavelet threshold denoising for pretreatment and a first derivative adaptive smoothing filter for smooth pulse recovery,so as to effectively restrain the influence of electrical noise and FM-to-AM modulation in the time–power curve,and enhance the calibration accuracy of the pulse shape in the feedback control system.The related simulation and experiment results show that the proposed scheme can obtain a better shaping effect on the high-contrast temporal shape in comparison with the cumulative average algorithm and orthogonal matching pursuit algorithm combined with a traditional smoothing filter.The implementation of the hybrid scheme mechanism increased the signal-to-noise ratio of the laser pulse from about 11 dB to 30 dB,and the filtered pulse is smooth without modulation,with smoothness of about 98.8%. 展开更多
关键词 first derivative adaptive smoothing filter recovery of smooth pulse signal-to-noise ratio wavelet threshold denoising
原文传递
Fault diagnosis of railway point machines based on wavelet transform and artificial immune algorithm
5
作者 Xiaochun Wu Weikang Yang Jianrong Cao 《Transportation Safety and Environment》 EI 2023年第4期117-126,共10页
Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noi... Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noise on power signals in the data acquisition process of the railway centralized signaling monitoring(CSM)system,this study utilizes wavelet threshold denoising to eliminate interference.The results show that the accuracy of fault diagnosis can be improved by 4.4% after denoising the power signals.Then in order to attain a lighter weight and shorten the running time of the diagnosis model,Mallat wavelet decomposition and artificial immune algorithm are applied to RPM fault diagnosis.Finally,voluminous experiments using veritable power signals collected from CSM are introduced,which show that combining these methods can procure higher precision of RPMs and curtail fault diagnosis time.This substantiates the validity and feasibility of the presented approach. 展开更多
关键词 railway point machines wavelet threshold denoising Mallat wavelet decomposition artificial immune algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部