The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engin...The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.展开更多
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a...Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.展开更多
Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integra...Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.展开更多
The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the ...The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the Fourier integral transform, the problem was reduced as a Cauchy singular integral equation with an unknown dislocation density function. The collocation method based on Chebyshev polynomials proposed by Erdogan and Gupta was used to solve the singular integral equation numerically. With the numerical solution, the effects of the geometrical and physical parameters on the stress intensity factor (SIF) were analyzed and the following conclusions were drawn: (a) The region affected by the interface or free surface varies with the material rigidity, and higher material rigidity will lead to bigger affected region. (b) The SIF of the crack in the affected region and parallel to the micro-discontinuous interface is lower than those of the weak discontinuous cases. Reducing the weak-discontinuity of the interface will be beneficial to decrease the SIF of the interface-parallel crack in the region affected by the interface. (c) The effect of the free surface on SIF is more remarkable than that of the interface, and the latter is still more notable than that of the material rigidity. When the effects of the interface and free surface are fixed, increase of the material rigidity will enhance the value of SIF.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of in...In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of integro-differential equations of first kind originating from an aeroelasticity problem. By manipulating the bounds of initial conditions with random variations, this study numerically demonstrated the well-posedness properties of the equations. Finally, an assumption of separating variables, allowed for linear splines to be chosen as a basis and for the differentiation and integration of the integro-differential part to be interchanged;hence, a numerical scheme was constructed.展开更多
In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the b...In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front.展开更多
For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected gen...For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately constructed.The developed method's spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-norm.Numerical results indicate the usefulness of the proposed method.展开更多
Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities b...Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities between boundary displacement derivatives and tractions at a singular boundary point. The analytical forms of the relations at a singular smooth point for 2D isotropic elastic problems have been established in this work. By using the relations, positions of the singular boundary points and the corresponding singularity intensities of the unknown boundary field variables can be determined a priori. Therefore, more appropriate shape functions of the unknown boundary field variables in singular elements can be constructed. A numerical example shows that the accuracy of the BEM analysis using the developed theory is greatly increased.展开更多
The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitut...The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. ne quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.展开更多
We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This e...We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.展开更多
This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functio...This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.展开更多
The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The g...The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.展开更多
A new numerical method for the fractional integral that only stores part history data is presented, and its discretization error is estimated. The method can be used to solve the integro_differential equation includin...A new numerical method for the fractional integral that only stores part history data is presented, and its discretization error is estimated. The method can be used to solve the integro_differential equation including fractional integral or fractional derivative in a long history. The difficulty of storing all history data is overcome and the error can be controlled. As application,motion equations governing the dynamical behavior of a viscoelastic Timoshenko beam with fractional derivative constitutive relation are given. The dynamical response of the beam subjected to a periodic excitation is studied by using the separation variables method. Then the new numerical method is used to solve a class of weakly singular Volterra integro_differential equations which are applied to describe the dynamical behavior of viscoelastic beams with fractional derivative constitutive relations. The analytical and unmerical results are compared. It is found that they are very close.展开更多
We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the p...We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.展开更多
This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing t...This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.展开更多
In this paper,we propose a hybrid spectral method for a type of nonlocal problems,nonlinear Volterra integral equations(VIEs)of the second kind.The main idea is to use the shifted generalized Log orthogonal functions(...In this paper,we propose a hybrid spectral method for a type of nonlocal problems,nonlinear Volterra integral equations(VIEs)of the second kind.The main idea is to use the shifted generalized Log orthogonal functions(GLOFs)as the basis for the first interval and employ the classical shifted Legendre polynomials for other subintervals.This method is robust for VIEs with weakly singular kernel due to the GLOFs can efficiently approximate one-point singular functions as well as smooth functions.The well-posedness and the related error estimates will be provided.Abundant numerical experiments will verify the theoretical results and show the high-efficiency of the new hybrid spectral method.展开更多
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of fun...A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.展开更多
The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying...The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.展开更多
This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by mea...This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by means of the second order convolution quadrature suggested by Lubich.The stability and convergence are proved by the energy method.A numerical experiment is reported to verify the theoretical predictions.展开更多
基金support of the National Natural Science Foundation of China(12072011).
文摘The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.
文摘Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.
基金Supported by the National Natural Science Foundation of China (60572048)the Natural Science Foundation of Guangdong Province(054006621)
文摘Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.
基金the BK 21 Program of South Korea and the National Natural Science Foundation of China(No.50574097).
文摘The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the Fourier integral transform, the problem was reduced as a Cauchy singular integral equation with an unknown dislocation density function. The collocation method based on Chebyshev polynomials proposed by Erdogan and Gupta was used to solve the singular integral equation numerically. With the numerical solution, the effects of the geometrical and physical parameters on the stress intensity factor (SIF) were analyzed and the following conclusions were drawn: (a) The region affected by the interface or free surface varies with the material rigidity, and higher material rigidity will lead to bigger affected region. (b) The SIF of the crack in the affected region and parallel to the micro-discontinuous interface is lower than those of the weak discontinuous cases. Reducing the weak-discontinuity of the interface will be beneficial to decrease the SIF of the interface-parallel crack in the region affected by the interface. (c) The effect of the free surface on SIF is more remarkable than that of the interface, and the latter is still more notable than that of the material rigidity. When the effects of the interface and free surface are fixed, increase of the material rigidity will enhance the value of SIF.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
文摘In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of integro-differential equations of first kind originating from an aeroelasticity problem. By manipulating the bounds of initial conditions with random variations, this study numerically demonstrated the well-posedness properties of the equations. Finally, an assumption of separating variables, allowed for linear splines to be chosen as a basis and for the differentiation and integration of the integro-differential part to be interchanged;hence, a numerical scheme was constructed.
文摘In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.11931003)by the National Natural Science Foundation of China(Grant Nos.41974133,12126325)by the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200620).
文摘For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately constructed.The developed method's spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-norm.Numerical results indicate the usefulness of the proposed method.
文摘Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities between boundary displacement derivatives and tractions at a singular boundary point. The analytical forms of the relations at a singular smooth point for 2D isotropic elastic problems have been established in this work. By using the relations, positions of the singular boundary points and the corresponding singularity intensities of the unknown boundary field variables can be determined a priori. Therefore, more appropriate shape functions of the unknown boundary field variables in singular elements can be constructed. A numerical example shows that the accuracy of the BEM analysis using the developed theory is greatly increased.
文摘The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. ne quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.
基金supported by the Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(Grant Nos.11601169,11471142,11271160,11571063,11731008 and 11671309)
文摘We establish the global existence of small-amplitude solutions near a global Maxwellian to the Cauchy problem of the Vlasov-Maxwell-Boltzmann system for non-cutoff soft potentials with weak angular singularity. This extends the work of Duan et al.(2013), in which the case of strong angular singularity is considered, to the case of weak angular singularity.
文摘This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.
文摘The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.
文摘A new numerical method for the fractional integral that only stores part history data is presented, and its discretization error is estimated. The method can be used to solve the integro_differential equation including fractional integral or fractional derivative in a long history. The difficulty of storing all history data is overcome and the error can be controlled. As application,motion equations governing the dynamical behavior of a viscoelastic Timoshenko beam with fractional derivative constitutive relation are given. The dynamical response of the beam subjected to a periodic excitation is studied by using the separation variables method. Then the new numerical method is used to solve a class of weakly singular Volterra integro_differential equations which are applied to describe the dynamical behavior of viscoelastic beams with fractional derivative constitutive relations. The analytical and unmerical results are compared. It is found that they are very close.
基金The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.
文摘We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.
文摘This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.
基金The research of C.Zhang is partially supported by NSFC(Grant Nos.11971207,12071172)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJA11002)The research of S.Chen is partially supported by NSFC(Grant No.11801235).
文摘In this paper,we propose a hybrid spectral method for a type of nonlocal problems,nonlinear Volterra integral equations(VIEs)of the second kind.The main idea is to use the shifted generalized Log orthogonal functions(GLOFs)as the basis for the first interval and employ the classical shifted Legendre polynomials for other subintervals.This method is robust for VIEs with weakly singular kernel due to the GLOFs can efficiently approximate one-point singular functions as well as smooth functions.The well-posedness and the related error estimates will be provided.Abundant numerical experiments will verify the theoretical results and show the high-efficiency of the new hybrid spectral method.
基金This research is partially supported by the GRF grants of Hong Kong Research Grant Council the FRG grants of Hong Kong Baptist University+2 种基金 the US National Science Foundation through grant DMS-0612908 the Ministry of Education of China through the Changjiang Scholars program and Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program.
文摘A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China(10971062)the Scientific Research Foundation of Central South University of Forestry and Technology.
文摘This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by means of the second order convolution quadrature suggested by Lubich.The stability and convergence are proved by the energy method.A numerical experiment is reported to verify the theoretical predictions.