Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q...The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul...The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.展开更多
To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature o...To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.展开更多
The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ...The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...展开更多
The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,the...The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,there was no obviously change of R.T.tensile strength, but impact toughness decreased with the rise of W content.On the other hand,the increase of W content enhanced the short time stress rupture strength,but did not for the long time one. The increase of W have two effects on the precipitation behavior,promoting Laves formation of type Fe_2W,increasing the precipitated phase amount and speeding up the coarsening pro- cess of precipitated phase at high temperatures.The effect of W on the mechanical properties is closely associated with precipitation behaviors.When the rupture life is short,there has no enough time to coarsen the precipitated phases,so the increase of precipitated phases results in strengthening effect,i.e.the W increases the high temperature strength.After prolonged expo- sure,the evident coarsening took plaee,that decreased the effect of precipitation.展开更多
The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high tempera...The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones.展开更多
From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam ...From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M_(23)C_6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M_(23)C_6 carbides tend to coarsen gradually.The size of M_(23)C_6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M_(23)C_6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M_(23)C_6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles.展开更多
With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ...With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.展开更多
Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear...Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.展开更多
Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it ha...Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.展开更多
The deformation behavior of 9 Cr-3 W-3 Co heat-resistant steel at a high-temperature range of 1 060-1 260 ℃ and a strain rate of 0.3 s^(-1) was studied using a Gleeble 3800 heat-simulating test machine. The microstru...The deformation behavior of 9 Cr-3 W-3 Co heat-resistant steel at a high-temperature range of 1 060-1 260 ℃ and a strain rate of 0.3 s^(-1) was studied using a Gleeble 3800 heat-simulating test machine. The microstructure and precipitation phases of the steel at different temperatures were studied by optical microscopy,scanning electron microscopy,and transmission electron microscopy. The results show that due to its low melting point,coarse grain size,and the segregation of P,S,and Cu at the grain boundary,the thermoplasticity of 9 Cr-3 W-3 Co steel is poor at temperatures higher than 1 200 ℃.The bulk ferrite phase was the main factor affecting the thermoplasticity at 1 100-1 200 ℃.展开更多
Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experim...Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimental results indicated that microstructure of T91 weld metal was austenite + a little amount of S ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6 blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. There existed no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of $63 mmx5 mm, when increasing welding heat input (E) from 4.8 kJ/cm to 12 5 kJ/cm, fracture morphology in the fusion zone and the HAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about 9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel.展开更多
In combination with theoretical calculations,experiments were conducted to investigate the evolution behavior of nonmetallic inclusions(NMIs)during the manufacture of large-scale heat-resistant steel ingots using 9CrM...In combination with theoretical calculations,experiments were conducted to investigate the evolution behavior of nonmetallic inclusions(NMIs)during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF_(2)–CaO–Al_(2)O_(3)–SiO_(2)–B_(2)O_(3)electroslag remelting(ESR)-type slag in an 80-t industrial ESR furnace.The main types of NMI in the consumable electrode comprised pure alumina,a multiphase oxide consisting of an Al_(2)O_(3)core and liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO shell,and M_(23)C_(6)carbides with an MnS core.The Al_(2)O_(3)and MnS inclusions had higher precipitation temperatures than the M_(23)C_(6)-type carbide under equilibrium and nonequilibrium solidification processes.Therefore,inclusions can act as nucleation sites for carbide layer precipitation.The ESR process completely removed the liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO oxide and MnS inclusion with a carbide shell,and only the Al_(2)O_(3)inclusions and Al_(2)O_(3)core with a carbide shell occupied the remelted ingot.The M_(23)C_(6)-type carbides in steel were determined as Cr_(23)C_(6)based on the analysis of transmission electron microscopy results.The substitution of Cr with W,Fe,or/and Mo in the Cr_(23)C_(6)lattice caused slight changes in the lattice parameter of the Cr_(23)C_(6)carbide.Therefore,Cr_(21.34)Fe_(1.66)C_(6),(Cr_(19)W_(4)C_(6),Cr_(18.4)Mo_(4.6)C_(6),and Cr_(16)Fe_(5)Mo_(2)C_(6)can match the fraction pattern of Cr_(23)C_(6)carbide.The Al_(2)O_(3)inclusions in the remelted ingot formed due to the reduction of CaO,SiO_(2),and MnO components in the liquid inclusion.The increased Al content in liquid steel or the higher supersaturation degree of Al_(2)O_(3)precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF_(2)and the increase in CaO content in the ESR-type slag.展开更多
Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P= T(C + Igt), have determined for pearlitic heat resistant steel 12Cr1MoV and 15CrMo(20.62 and 20...Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P= T(C + Igt), have determined for pearlitic heat resistant steel 12Cr1MoV and 15CrMo(20.62 and 20.30). The simulation experiments of high temperature aging, heated from 1.5 to 873 hours, have been designed and performed for its verification. And in combination with published information and the present nearly quantitative works, it has further been verified that both the degradations of microstructures and mechanical properties show a good accuracy and practicability using the Larson-Miller parameter with the present determined C-values. Finally, the effects of carbon content on C-value are analyzed by the empirical electron theory of solids and molecules (EET).展开更多
The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and networ...The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.展开更多
The Vacuum diffusion bonding between nickel-base superalloy K24 and heatresisting steel 1Cr11Ni2W2MoV was studied and the effects of welding parameters,including bonding temperature T,pressure P,time t,vacuum V and in...The Vacuum diffusion bonding between nickel-base superalloy K24 and heatresisting steel 1Cr11Ni2W2MoV was studied and the effects of welding parameters,including bonding temperature T,pressure P,time t,vacuum V and interlayer thickness h ,on the microstructure and properties of the joint were investigated.The optimum parameters for the diffusion bonding were found to be:T=1100 ̄1200℃,t=5 ̄30 MPa,V≥1×10-2 Pa.When the welded specimens are tensioned at room temperature,ductile fracture takes place at the nickel-base superalloy part or at the joint and the tensile strength reaches 850 MPa,When the tensile tests are carried out at 500℃ ,all the bonded specimens fractured at heat-resisting steel part,and tensile strength is 750 MPa.The interlayer thickness greatly affects the joint properties,and the interlayer thickness depends on the size of the bonded specimen.The impeller of nickel-base superalloy K24 and shaft of heat-resisting steel 1Cr11Ni2MoV,which are used in aerospace engine,has been successfully jointed jointed by means of high frequency induction diffusion bonding.展开更多
The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic ...The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.展开更多
The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase t...The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.展开更多
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171057, 52034005, 51901225, and 12027813)the Liaoning Province Excellent Youth Foundation, China (No. 2021-YQ-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2021061)
文摘The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
基金Funded by the National Natural Science Foundation of China(No.51701100)the China Postdoctoral Science Foundation(No.2020T130552)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province。
文摘The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.
基金This work was financially supported by the Science&Technology Department of Sichuan Province,China(No.2017KJT0110).
文摘To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.
文摘The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...
文摘The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,there was no obviously change of R.T.tensile strength, but impact toughness decreased with the rise of W content.On the other hand,the increase of W content enhanced the short time stress rupture strength,but did not for the long time one. The increase of W have two effects on the precipitation behavior,promoting Laves formation of type Fe_2W,increasing the precipitated phase amount and speeding up the coarsening pro- cess of precipitated phase at high temperatures.The effect of W on the mechanical properties is closely associated with precipitation behaviors.When the rupture life is short,there has no enough time to coarsen the precipitated phases,so the increase of precipitated phases results in strengthening effect,i.e.the W increases the high temperature strength.After prolonged expo- sure,the evident coarsening took plaee,that decreased the effect of precipitation.
文摘The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones.
文摘From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M_(23)C_6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M_(23)C_6 carbides tend to coarsen gradually.The size of M_(23)C_6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M_(23)C_6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M_(23)C_6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles.
文摘With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.
文摘Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.
文摘Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.
文摘The deformation behavior of 9 Cr-3 W-3 Co heat-resistant steel at a high-temperature range of 1 060-1 260 ℃ and a strain rate of 0.3 s^(-1) was studied using a Gleeble 3800 heat-simulating test machine. The microstructure and precipitation phases of the steel at different temperatures were studied by optical microscopy,scanning electron microscopy,and transmission electron microscopy. The results show that due to its low melting point,coarse grain size,and the segregation of P,S,and Cu at the grain boundary,the thermoplasticity of 9 Cr-3 W-3 Co steel is poor at temperatures higher than 1 200 ℃.The bulk ferrite phase was the main factor affecting the thermoplasticity at 1 100-1 200 ℃.
基金The work was supported by the Foundation of National Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, China.
文摘Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding was researched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimental results indicated that microstructure of T91 weld metal was austenite + a little amount of S ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6 blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. There existed no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of $63 mmx5 mm, when increasing welding heat input (E) from 4.8 kJ/cm to 12 5 kJ/cm, fracture morphology in the fusion zone and the HAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about 9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel.
基金the Korea Evaluation Institute of Industrial Technology(KEIT,No.20009956)the Korea Institute for Advancement of Technology(KIAT,No.P0023676,HRD Program for Industrial Innovation)+1 种基金funded by the Ministry of Trade,Industry and Energy(MOTIE),Koreathe Swedish Foundation for International Cooperation in Research and Higher Education(STINT)for supporting the collaboration between KTH(Sweden)and Hanyang University(Korea)。
文摘In combination with theoretical calculations,experiments were conducted to investigate the evolution behavior of nonmetallic inclusions(NMIs)during the manufacture of large-scale heat-resistant steel ingots using 9CrMoCoB heat-resistant steel and CaF_(2)–CaO–Al_(2)O_(3)–SiO_(2)–B_(2)O_(3)electroslag remelting(ESR)-type slag in an 80-t industrial ESR furnace.The main types of NMI in the consumable electrode comprised pure alumina,a multiphase oxide consisting of an Al_(2)O_(3)core and liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO shell,and M_(23)C_(6)carbides with an MnS core.The Al_(2)O_(3)and MnS inclusions had higher precipitation temperatures than the M_(23)C_(6)-type carbide under equilibrium and nonequilibrium solidification processes.Therefore,inclusions can act as nucleation sites for carbide layer precipitation.The ESR process completely removed the liquid CaO–Al_(2)O_(3)–SiO_(2)–MnO oxide and MnS inclusion with a carbide shell,and only the Al_(2)O_(3)inclusions and Al_(2)O_(3)core with a carbide shell occupied the remelted ingot.The M_(23)C_(6)-type carbides in steel were determined as Cr_(23)C_(6)based on the analysis of transmission electron microscopy results.The substitution of Cr with W,Fe,or/and Mo in the Cr_(23)C_(6)lattice caused slight changes in the lattice parameter of the Cr_(23)C_(6)carbide.Therefore,Cr_(21.34)Fe_(1.66)C_(6),(Cr_(19)W_(4)C_(6),Cr_(18.4)Mo_(4.6)C_(6),and Cr_(16)Fe_(5)Mo_(2)C_(6)can match the fraction pattern of Cr_(23)C_(6)carbide.The Al_(2)O_(3)inclusions in the remelted ingot formed due to the reduction of CaO,SiO_(2),and MnO components in the liquid inclusion.The increased Al content in liquid steel or the higher supersaturation degree of Al_(2)O_(3)precipitation in the remelted ingot than that in the electrode can be attributed to the evaporation of CaF_(2)and the increase in CaO content in the ESR-type slag.
文摘Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P= T(C + Igt), have determined for pearlitic heat resistant steel 12Cr1MoV and 15CrMo(20.62 and 20.30). The simulation experiments of high temperature aging, heated from 1.5 to 873 hours, have been designed and performed for its verification. And in combination with published information and the present nearly quantitative works, it has further been verified that both the degradations of microstructures and mechanical properties show a good accuracy and practicability using the Larson-Miller parameter with the present determined C-values. Finally, the effects of carbon content on C-value are analyzed by the empirical electron theory of solids and molecules (EET).
基金Project supported by the Innovation Fund for Outstanding Scholar of Henan Province (0621000600)
文摘The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.
文摘The Vacuum diffusion bonding between nickel-base superalloy K24 and heatresisting steel 1Cr11Ni2W2MoV was studied and the effects of welding parameters,including bonding temperature T,pressure P,time t,vacuum V and interlayer thickness h ,on the microstructure and properties of the joint were investigated.The optimum parameters for the diffusion bonding were found to be:T=1100 ̄1200℃,t=5 ̄30 MPa,V≥1×10-2 Pa.When the welded specimens are tensioned at room temperature,ductile fracture takes place at the nickel-base superalloy part or at the joint and the tensile strength reaches 850 MPa,When the tensile tests are carried out at 500℃ ,all the bonded specimens fractured at heat-resisting steel part,and tensile strength is 750 MPa.The interlayer thickness greatly affects the joint properties,and the interlayer thickness depends on the size of the bonded specimen.The impeller of nickel-base superalloy K24 and shaft of heat-resisting steel 1Cr11Ni2MoV,which are used in aerospace engine,has been successfully jointed jointed by means of high frequency induction diffusion bonding.
基金supported by the Natural Science Foundation of Gansu Province(No.ZS001-A22-046-C).
文摘The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.
基金the National Natural Science Foundation of China(No.50401003)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)of China(No.200335)+1 种基金the Natural Science Foundation of Tianjin City(No.033608811)the Fok Ying Tong Education Foundation,and the Program for New Century Excellent Talents in University for grant and financial support.
文摘The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase transformation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.