Web information extraction is viewed as a classification process and a competing classification method is presented to extract Web information directly through classification. Web fragments are represented with three ...Web information extraction is viewed as a classification process and a competing classification method is presented to extract Web information directly through classification. Web fragments are represented with three general features and the similarities between fragments are then defined on the bases of these features. Through competitions of fragments for different slots in information templates, the method classifies fragments into slot classes and filters out noise information. Far less annotated samples are needed as compared with rule-based methods and therefore it has a strong portability. Experiments show that the method has good performance and is superior to DOM-based method in information extraction. Key words information extraction - competing classification - feature extraction - wrapper induction CLC number TP 311 Foundation item: Supported by the National Natural Science Foundation of China (60303024)Biography: LI Xiang-yang (1974-), male, Ph. D. Candidate, research direction: information extraction, natural language processing.展开更多
Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracte...Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).展开更多
Information extraction techniques on the Web are the current research hotspot. Now many information extraction techniques based on different principles have appeared and have different capabilities. We classify the ex...Information extraction techniques on the Web are the current research hotspot. Now many information extraction techniques based on different principles have appeared and have different capabilities. We classify the existing information extraction techniques by the principle of information extraction and analyze the methods and principles of semantic information adding, schema defining, rule expression, semantic items locating and object locating in the approaches. Based on the above survey and analysis, several open problems are discussed.展开更多
As a real-time and authoritative source,the official Web pages of organizations contain a large amount of information.The diversity of Web content and format makes it essential for pre-processing to get the unified at...As a real-time and authoritative source,the official Web pages of organizations contain a large amount of information.The diversity of Web content and format makes it essential for pre-processing to get the unified attributed data,which has the value of organizational analysis and mining.The existing research on dealing with multiple Web scenarios and accuracy performance is insufficient.This paper aims to propose a method to transform organizational official Web pages into the data with attributes.After locating the active blocks in the Web pages,the structural and content features are proposed to classify information with the specific model.The extraction methods based on trigger lexicon and LSTM(Long Short-Term Memory)are proposed,which efficiently process the classified information and extract data that matches the attributes.Finally,an accurate and efficient method to classify and extract information from organizational official Web pages is formed.Experimental results show that our approach improves the performing indicators and exceeds the level of state of the art on real data set from organizational official Web pages.展开更多
The massive web-based information resources have led to an increasing demand for effective automatic retrieval of target information for web applications. This paper introduces a web-based data extraction tool that de...The massive web-based information resources have led to an increasing demand for effective automatic retrieval of target information for web applications. This paper introduces a web-based data extraction tool that deploys various algorithms to locate, extract and filter tabular data from HTML pages and to transform them into new web-based representations. The tool has been applied in an aquaculture web application platform for extracting and generating aquatic product market information. Results prove that this tool is very effective in extracting the required data from web pages.展开更多
The paper introduce segmentation ideas in the pretreatment process of web page. By page segmentation technique to extract the accurate information in the extract region, the region was processed to extract according t...The paper introduce segmentation ideas in the pretreatment process of web page. By page segmentation technique to extract the accurate information in the extract region, the region was processed to extract according to the rules of ontology extraction, and ultimately get the information you need. Through experiments on two real datasets and compare with related work, experimental results show that this method can achieve good extraction results.展开更多
The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-hei...The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognifion for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 9o.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity.展开更多
Information extraction plays a vital role in natural language processing,to extract named entities and events from unstructured data.Due to the exponential data growth in the agricultural sector,extracting significant...Information extraction plays a vital role in natural language processing,to extract named entities and events from unstructured data.Due to the exponential data growth in the agricultural sector,extracting significant information has become a challenging task.Though existing deep learningbased techniques have been applied in smart agriculture for crop cultivation,crop disease detection,weed removal,and yield production,still it is difficult to find the semantics between extracted information due to unswerving effects of weather,soil,pest,and fertilizer data.This paper consists of two parts.An initial phase,which proposes a data preprocessing technique for removal of ambiguity in input corpora,and the second phase proposes a novel deep learning-based long short-term memory with rectification in Adam optimizer andmultilayer perceptron to find agricultural-based named entity recognition,events,and relations between them.The proposed algorithm has been trained and tested on four input corpora i.e.,agriculture,weather,soil,and pest&fertilizers.The experimental results have been compared with existing techniques and itwas observed that the proposed algorithm outperformsWeighted-SOM,LSTM+RAO,PLR-DBN,KNN,and Na飗e Bayes on standard parameters like accuracy,sensitivity,and specificity.展开更多
Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy informa...Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.展开更多
GIS, a powerful tool for processing spatial data, is advantageous in its spatial overlaying. In this paper, GIS is applied to the extraction of geological information. Information associated with mineral resources is...GIS, a powerful tool for processing spatial data, is advantageous in its spatial overlaying. In this paper, GIS is applied to the extraction of geological information. Information associated with mineral resources is chosen to delineate the geo anomalies, the basis of ore forming anomalies and of mineral deposit location. This application is illustrated with an example in Weixi area, Yunnan Province.展开更多
OOV term translation plays an important role in natural language processing. Although many researchers in the past have endeavored to solve the OOV term translation problems, but none existing methods offer definition...OOV term translation plays an important role in natural language processing. Although many researchers in the past have endeavored to solve the OOV term translation problems, but none existing methods offer definition or context information of OOV terms. Furthermore, non-existing methods focus on cross-language definition retrieval for OOV terms. Never the less, it has always been so difficult to evaluate the correctness of an OOV term translation without domain specific knowledge and correct references. Our English definition ranking method differentiate the types of OOV terms, and applies different methods for translation extraction. Our English definition ranking method also extracts multilingual context information and monolingual definitions of OOV terms. In addition, we propose a novel cross-language definition retrieval system for OOV terms. Never the less, we propose an auto re-evaluation method to evaluate the correctness of OOV translations and definitions. Our methods achieve high performances against existing methods.展开更多
Traditional pattern representation in information extraction lack in the ability of representing domain-specific concepts and are therefore devoid of flexibility. To overcome these restrictions, an enhanced pattern re...Traditional pattern representation in information extraction lack in the ability of representing domain-specific concepts and are therefore devoid of flexibility. To overcome these restrictions, an enhanced pattern representation is designed which includes ontological concepts, neighboring-tree structures and soft constraints. An information-(extraction) inference engine based on hypothesis-generation and conflict-resolution is implemented. The proposed technique is successfully applied to an information extraction system for Chinese-language query front-end of a job-recruitment search engine.展开更多
In order to explore how to extract more transport information from current fluctuation, a theoretical extraction scheme is presented in a single barrier structure based on exclusion models, which include counter-flows...In order to explore how to extract more transport information from current fluctuation, a theoretical extraction scheme is presented in a single barrier structure based on exclusion models, which include counter-flows model and tunnel model. The first four cumulants of these two exclusion models are computed in a single barrier structure, and their characteristics are obtained. A scheme with the help of the first three cumulants is devised to check a transport process to follow the counter-flows model, the tunnel model or neither of them. Time series generated by Monte Carlo techniques is adopted to validate the abstraction procedure, and the result is reasonable.展开更多
Satellite remote sensing data are usually used to analyze the spatial distribution pattern of geological structures and generally serve as a significant means for the identification of alteration zones. Based on the L...Satellite remote sensing data are usually used to analyze the spatial distribution pattern of geological structures and generally serve as a significant means for the identification of alteration zones. Based on the Landsat Enhanced Thematic Mapper (ETM+) data, which have better spectral resolution (8 bands) and spatial resolution (15 m in PAN band), the synthesis processing techniques were presented to fulfill alteration information extraction: data preparation, vegetation indices and band ratios, and expert classifier-based classification. These techniques have been implemented in the MapGIS-RSP software (version 1.0), developed by the Wuhan Zondy Cyber Technology Co., Ltd, China. In the study area application of extracting alteration information in the Zhaoyuan (招远) gold mines, Shandong (山东) Province, China, several hydorthermally altered zones (included two new sites) were found after satellite imagery interpretation coupled with field surveys. It is concluded that these synthesis processing techniques are useful approaches and are applicable to a wide range of gold-mineralized alteration information extraction.展开更多
A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson corr...A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.展开更多
A cryptosystem based on computation of square roots of complex integers modulo composite n is described in this paper. This paper provides an algorithm extracting a square root of Gaussian integer. Various properties ...A cryptosystem based on computation of square roots of complex integers modulo composite n is described in this paper. This paper provides an algorithm extracting a square root of Gaussian integer. Various properties of square roots and a method for finding Gaussian generators are demonstrated. The generators can be instrumental in constructing other cryptosystems. It is shown how to significantly reduce average complexity of decryption per each block of ciphertext.展开更多
Analyzing Research and Development(R&D)trends is important because it can influence future decisions regarding R&D direction.In typical trend analysis,topic or technology taxonomies are employed to compute the...Analyzing Research and Development(R&D)trends is important because it can influence future decisions regarding R&D direction.In typical trend analysis,topic or technology taxonomies are employed to compute the popularities of the topics or codes over time.Although it is simple and effective,the taxonomies are difficult to manage because new technologies are introduced rapidly.Therefore,recent studies exploit deep learning to extract pre-defined targets such as problems and solutions.Based on the recent advances in question answering(QA)using deep learning,we adopt a multi-turn QA model to extract problems and solutions from Korean R&D reports.With the previous research,we use the reports directly and analyze the difficulties in handling them using QA style on Information Extraction(IE)for sentence-level benchmark dataset.After investigating the characteristics of Korean R&D,we propose a model to deal with multiple and repeated appearances of targets in the reports.Accordingly,we propose a model that includes an algorithm with two novel modules and a prompt.A newly proposed methodology focuses on reformulating a question without a static template or pre-defined knowledge.We show the effectiveness of the proposed model using a Korean R&D report dataset that we constructed and presented an in-depth analysis of the benefits of the multi-turn QA model.展开更多
Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed vi...Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.展开更多
Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of th...Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of the road may diverge considerably from its projected one, rendering subsequent studies inaccurate or impossible. Moreover, the systematic acquisition of this data for the entire road network of a country or even a state represents a very challenging and laborious task. This study's goal was the extraction of geometric design data for the paved segments of the Brazilian federal highway network, containing more than 47,000 km of highways. It presents the details of the method's adoption process, the particularities of its application to the dataset and the obtained geometric design information. Additionally, it provides a first overview of the Brazilian federal highway network composition (curves and tangents) and geometry.展开更多
Visual Information Extraction (VIE) is a technique that enables users to perform information extraction from visual documents driven by the visual appearance and the spatial relations occurring among the elements in t...Visual Information Extraction (VIE) is a technique that enables users to perform information extraction from visual documents driven by the visual appearance and the spatial relations occurring among the elements in the document. In particular, the extractions are expressed through a query language similar to the well known SQL. To further reduce the human effort in the extraction task, in this paper we present a fully formalized assistance mechanism that helps users in the interactive formulation of the queries.展开更多
文摘Web information extraction is viewed as a classification process and a competing classification method is presented to extract Web information directly through classification. Web fragments are represented with three general features and the similarities between fragments are then defined on the bases of these features. Through competitions of fragments for different slots in information templates, the method classifies fragments into slot classes and filters out noise information. Far less annotated samples are needed as compared with rule-based methods and therefore it has a strong portability. Experiments show that the method has good performance and is superior to DOM-based method in information extraction. Key words information extraction - competing classification - feature extraction - wrapper induction CLC number TP 311 Foundation item: Supported by the National Natural Science Foundation of China (60303024)Biography: LI Xiang-yang (1974-), male, Ph. D. Candidate, research direction: information extraction, natural language processing.
基金This work is developed with the support of the H2020 RISIS 2 Project(No.824091)and of the“Sapienza”Research Awards No.RM1161550376E40E of 2016 and RM11916B8853C925 of 2019.This article is a largely extended version of Bianchi et al.(2019)presented at the ISSI 2019 Conference held in Rome,2–5 September 2019.
文摘Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).
文摘Information extraction techniques on the Web are the current research hotspot. Now many information extraction techniques based on different principles have appeared and have different capabilities. We classify the existing information extraction techniques by the principle of information extraction and analyze the methods and principles of semantic information adding, schema defining, rule expression, semantic items locating and object locating in the approaches. Based on the above survey and analysis, several open problems are discussed.
基金This work was supported by the National Key Research and Development Program of China(Nos.2016QY03D0501,2017YFB0803300)the National Natural Science Foundation of China(Nos.61601146,61732022)Sichuan Science and Technology Program(No.2019YFSY0049).
文摘As a real-time and authoritative source,the official Web pages of organizations contain a large amount of information.The diversity of Web content and format makes it essential for pre-processing to get the unified attributed data,which has the value of organizational analysis and mining.The existing research on dealing with multiple Web scenarios and accuracy performance is insufficient.This paper aims to propose a method to transform organizational official Web pages into the data with attributes.After locating the active blocks in the Web pages,the structural and content features are proposed to classify information with the specific model.The extraction methods based on trigger lexicon and LSTM(Long Short-Term Memory)are proposed,which efficiently process the classified information and extract data that matches the attributes.Finally,an accurate and efficient method to classify and extract information from organizational official Web pages is formed.Experimental results show that our approach improves the performing indicators and exceeds the level of state of the art on real data set from organizational official Web pages.
基金Supported by the Shanghai Education Committee (No.06KZ016)
文摘The massive web-based information resources have led to an increasing demand for effective automatic retrieval of target information for web applications. This paper introduces a web-based data extraction tool that deploys various algorithms to locate, extract and filter tabular data from HTML pages and to transform them into new web-based representations. The tool has been applied in an aquaculture web application platform for extracting and generating aquatic product market information. Results prove that this tool is very effective in extracting the required data from web pages.
文摘The paper introduce segmentation ideas in the pretreatment process of web page. By page segmentation technique to extract the accurate information in the extract region, the region was processed to extract according to the rules of ontology extraction, and ultimately get the information you need. Through experiments on two real datasets and compare with related work, experimental results show that this method can achieve good extraction results.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2013SCU11006)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying,Mapping and Geoinformation of China(Grant NO.DM2014SC02)the Key Laboratory of Geospecial Information Technology,Ministry of Land and Resources of China(Grant NO.KLGSIT201504)
文摘The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognifion for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 9o.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity.
基金This work was supported by the Deanship of Scientific Research at King Khalid University through a General Research Project under Grant Number GRP/41/42.
文摘Information extraction plays a vital role in natural language processing,to extract named entities and events from unstructured data.Due to the exponential data growth in the agricultural sector,extracting significant information has become a challenging task.Though existing deep learningbased techniques have been applied in smart agriculture for crop cultivation,crop disease detection,weed removal,and yield production,still it is difficult to find the semantics between extracted information due to unswerving effects of weather,soil,pest,and fertilizer data.This paper consists of two parts.An initial phase,which proposes a data preprocessing technique for removal of ambiguity in input corpora,and the second phase proposes a novel deep learning-based long short-term memory with rectification in Adam optimizer andmultilayer perceptron to find agricultural-based named entity recognition,events,and relations between them.The proposed algorithm has been trained and tested on four input corpora i.e.,agriculture,weather,soil,and pest&fertilizers.The experimental results have been compared with existing techniques and itwas observed that the proposed algorithm outperformsWeighted-SOM,LSTM+RAO,PLR-DBN,KNN,and Na飗e Bayes on standard parameters like accuracy,sensitivity,and specificity.
文摘Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.
文摘GIS, a powerful tool for processing spatial data, is advantageous in its spatial overlaying. In this paper, GIS is applied to the extraction of geological information. Information associated with mineral resources is chosen to delineate the geo anomalies, the basis of ore forming anomalies and of mineral deposit location. This application is illustrated with an example in Weixi area, Yunnan Province.
文摘OOV term translation plays an important role in natural language processing. Although many researchers in the past have endeavored to solve the OOV term translation problems, but none existing methods offer definition or context information of OOV terms. Furthermore, non-existing methods focus on cross-language definition retrieval for OOV terms. Never the less, it has always been so difficult to evaluate the correctness of an OOV term translation without domain specific knowledge and correct references. Our English definition ranking method differentiate the types of OOV terms, and applies different methods for translation extraction. Our English definition ranking method also extracts multilingual context information and monolingual definitions of OOV terms. In addition, we propose a novel cross-language definition retrieval system for OOV terms. Never the less, we propose an auto re-evaluation method to evaluate the correctness of OOV translations and definitions. Our methods achieve high performances against existing methods.
文摘Traditional pattern representation in information extraction lack in the ability of representing domain-specific concepts and are therefore devoid of flexibility. To overcome these restrictions, an enhanced pattern representation is designed which includes ontological concepts, neighboring-tree structures and soft constraints. An information-(extraction) inference engine based on hypothesis-generation and conflict-resolution is implemented. The proposed technique is successfully applied to an information extraction system for Chinese-language query front-end of a job-recruitment search engine.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60676053)Applied Material in Xi’an Innovation Funds,China (Grant No. XA-AM-200603)
文摘In order to explore how to extract more transport information from current fluctuation, a theoretical extraction scheme is presented in a single barrier structure based on exclusion models, which include counter-flows model and tunnel model. The first four cumulants of these two exclusion models are computed in a single barrier structure, and their characteristics are obtained. A scheme with the help of the first three cumulants is devised to check a transport process to follow the counter-flows model, the tunnel model or neither of them. Time series generated by Monte Carlo techniques is adopted to validate the abstraction procedure, and the result is reasonable.
基金The paper is supported by the Research Foundation for Out-standing Young Teachers, China University of Geosciences (Wuhan) (Nos. CUGQNL0628, CUGQNL0640)the National High-Tech Research and Development Program (863 Program) (No. 2001AA135170)the Postdoctoral Foundation of the Shandong Zhaojin Group Co. (No. 20050262120)
文摘Satellite remote sensing data are usually used to analyze the spatial distribution pattern of geological structures and generally serve as a significant means for the identification of alteration zones. Based on the Landsat Enhanced Thematic Mapper (ETM+) data, which have better spectral resolution (8 bands) and spatial resolution (15 m in PAN band), the synthesis processing techniques were presented to fulfill alteration information extraction: data preparation, vegetation indices and band ratios, and expert classifier-based classification. These techniques have been implemented in the MapGIS-RSP software (version 1.0), developed by the Wuhan Zondy Cyber Technology Co., Ltd, China. In the study area application of extracting alteration information in the Zhaoyuan (招远) gold mines, Shandong (山东) Province, China, several hydorthermally altered zones (included two new sites) were found after satellite imagery interpretation coupled with field surveys. It is concluded that these synthesis processing techniques are useful approaches and are applicable to a wide range of gold-mineralized alteration information extraction.
基金Projects(61374140,61673173)supported by the National Natural Science Foundation of ChinaProjects(222201717006,222201714031)supported by the Fundamental Research Funds for the Central Universities,China
文摘A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.
文摘A cryptosystem based on computation of square roots of complex integers modulo composite n is described in this paper. This paper provides an algorithm extracting a square root of Gaussian integer. Various properties of square roots and a method for finding Gaussian generators are demonstrated. The generators can be instrumental in constructing other cryptosystems. It is shown how to significantly reduce average complexity of decryption per each block of ciphertext.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2019R1G1A1003312)the Ministry of Education(NRF-2021R1I1A3052815).
文摘Analyzing Research and Development(R&D)trends is important because it can influence future decisions regarding R&D direction.In typical trend analysis,topic or technology taxonomies are employed to compute the popularities of the topics or codes over time.Although it is simple and effective,the taxonomies are difficult to manage because new technologies are introduced rapidly.Therefore,recent studies exploit deep learning to extract pre-defined targets such as problems and solutions.Based on the recent advances in question answering(QA)using deep learning,we adopt a multi-turn QA model to extract problems and solutions from Korean R&D reports.With the previous research,we use the reports directly and analyze the difficulties in handling them using QA style on Information Extraction(IE)for sentence-level benchmark dataset.After investigating the characteristics of Korean R&D,we propose a model to deal with multiple and repeated appearances of targets in the reports.Accordingly,we propose a model that includes an algorithm with two novel modules and a prompt.A newly proposed methodology focuses on reformulating a question without a static template or pre-defined knowledge.We show the effectiveness of the proposed model using a Korean R&D report dataset that we constructed and presented an in-depth analysis of the benefits of the multi-turn QA model.
文摘Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.
文摘Road geometric design data are a vital input for diverse transportation studies. This information is usually obtained from the road design project. However, these are not always available and the as-built course of the road may diverge considerably from its projected one, rendering subsequent studies inaccurate or impossible. Moreover, the systematic acquisition of this data for the entire road network of a country or even a state represents a very challenging and laborious task. This study's goal was the extraction of geometric design data for the paved segments of the Brazilian federal highway network, containing more than 47,000 km of highways. It presents the details of the method's adoption process, the particularities of its application to the dataset and the obtained geometric design information. Additionally, it provides a first overview of the Brazilian federal highway network composition (curves and tangents) and geometry.
文摘Visual Information Extraction (VIE) is a technique that enables users to perform information extraction from visual documents driven by the visual appearance and the spatial relations occurring among the elements in the document. In particular, the extractions are expressed through a query language similar to the well known SQL. To further reduce the human effort in the extraction task, in this paper we present a fully formalized assistance mechanism that helps users in the interactive formulation of the queries.