A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phr...A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phrases, which improve the accuracy of clustering. Also, the equation to measure the in-dependence of a phrase is proposed in this paper. The new algorithm which improves suffix tree clustering algorithm (STC) is named as improved suffix tree clustering (ISTC). To validate the proposed algorithm, a prototype system is implemented and used to cluster several groups of web search results obtained from Google search engine. Experimental results show that the improved algorithm offers higher accuracy than traditional suffix tree clustering.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (60503020, 60503033, 60703086)Opening Foundation of Jiangsu Key Laboratory of Computer Information Processing Technology in Soochow Uni-versity (KJS0714)+1 种基金Research Foundation of Nanjing University of Posts and Telecommunications (NY207052, NY207082)National Natural Science Foundation of Jiangsu (BK2006094).
文摘A new common phrase scoring method is proposed according to term frequency-inverse document frequency (TFIDF) and independence of the phrase. Combining the two properties can help identify more reasonable common phrases, which improve the accuracy of clustering. Also, the equation to measure the in-dependence of a phrase is proposed in this paper. The new algorithm which improves suffix tree clustering algorithm (STC) is named as improved suffix tree clustering (ISTC). To validate the proposed algorithm, a prototype system is implemented and used to cluster several groups of web search results obtained from Google search engine. Experimental results show that the improved algorithm offers higher accuracy than traditional suffix tree clustering.