In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the de...In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the description context and generating refined semantic annotations, and then the semantics of the web service is refined. These restrictions are dynamically extracted from the parsing tree of the description text, with the guide of the restriction template extracted from the ontology definition. New semantic annotations are then generated by combining the original concept with the restrictions and represented via refined concept expressions. In addition, a novel semantic similarity measure for refined concept expressions is proposed for semantic web service discovery. Experimental results show that the matchmaker based on this method can improve the average precision of discovery and exhibit low computational complexity. Reducing the semantic bias by utilizing restriction information of annotations can refine the semantics of the web service and improve the discovery effectiveness.展开更多
Web service(WS)presents a good solution to the interoperability of different types of systems that aims to reduce the overhead of high processing in a resource-limited environment.With the increasing demand for mobile...Web service(WS)presents a good solution to the interoperability of different types of systems that aims to reduce the overhead of high processing in a resource-limited environment.With the increasing demand for mobile WS(MWS),the WS discovery process has become a significant challenging point in the WS lifecycle that aims to identify the relevant MWSs that best match the service requests.This discovery process is a resource-consuming task that cannot be performed efficiently in a mobile computing environment due to the limitations of mobile devices.Meanwhile,a cloud computing can provide rich computing resources for mobile environments given its unlimited and easily scalable resources.This paper proposes a semantic WS discovery and invocation framework in mobile environments based on cloud and a relationship-aware matchmaking algorithm.The discovery algorithm enriches MWS and user requests semantically with the functional and non-functional properties of Ontology Web Language for Services,such as Quality of Web Service,device context,and user preferences.The WS repository is filtered based on logical reasoning and a parameter-based matching algorithm to minimize the matching space and improve runtime performance.The cosine similarity between the user request and services repository is then assessed to generate the most relevant WS.The relationships among concepts in the ontology are considered to improve the recall and precision ratio.After the WS discovery process,users can invoke and test these services in a mobile environment through a dynamic user interface.The interface of the invocation process is changed according to the WS description document.An application prototype is also developed to evaluate the framework based on a Cordova cross-mobile development framework.展开更多
In any organization where SOA has been implemented, all of the web services are registered in UDDI and users’ needs are served by using appropriate web services. So in this paper, we will try to discover a service fr...In any organization where SOA has been implemented, all of the web services are registered in UDDI and users’ needs are served by using appropriate web services. So in this paper, we will try to discover a service from repository first that can provide the required output to the user. The process becomes difficult when a single service is not able to fulfill a user’s need and we need a combination of services to answer complex needs of users. In our paper, we will suggest a simpler approach for dynamic service composition using a graph based methodology. This will be a design time service composition. This approach uses the functional and non-functional parameters of the services to select the most suitable services for composition as per user’s need. This approach involves “service classification” on the basis of functional parameters, “service discovery” on the basis of user’s need and then “service composition” using the selected services on the basis of non-functional parameters like response time, cost, security and availability. Another challenge in SOA implementation is that, once the composition has performed, some services may become faulty at runtime and may stop the entire process of serving a user’s need. So, we will also describe a way of “dynamic service reconfiguration” in our approach that will enable us to identify and replace a faulty service that is violating the SLA or is not accessible anymore. This service reconfiguration is done without redoing or reconfiguring the entire composition. In the end, to simulate the proposed approach, we will represent a prototype application built on php 5.4 using My SQL database at backend.展开更多
基金The National Basic Research Program of China (973Program)(No.2005CB321802)Program for New Century Excellent Talents in University (No. NCET-06-0926)the National Natural Science Foundation of China (No.60403050,90612009)
文摘In order to improve the effectiveness of semantic web service discovery, the semantic bias between an interface parameter and an annotation is reduced by extracting semantic restrictions for the annotation from the description context and generating refined semantic annotations, and then the semantics of the web service is refined. These restrictions are dynamically extracted from the parsing tree of the description text, with the guide of the restriction template extracted from the ontology definition. New semantic annotations are then generated by combining the original concept with the restrictions and represented via refined concept expressions. In addition, a novel semantic similarity measure for refined concept expressions is proposed for semantic web service discovery. Experimental results show that the matchmaker based on this method can improve the average precision of discovery and exhibit low computational complexity. Reducing the semantic bias by utilizing restriction information of annotations can refine the semantics of the web service and improve the discovery effectiveness.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Web service(WS)presents a good solution to the interoperability of different types of systems that aims to reduce the overhead of high processing in a resource-limited environment.With the increasing demand for mobile WS(MWS),the WS discovery process has become a significant challenging point in the WS lifecycle that aims to identify the relevant MWSs that best match the service requests.This discovery process is a resource-consuming task that cannot be performed efficiently in a mobile computing environment due to the limitations of mobile devices.Meanwhile,a cloud computing can provide rich computing resources for mobile environments given its unlimited and easily scalable resources.This paper proposes a semantic WS discovery and invocation framework in mobile environments based on cloud and a relationship-aware matchmaking algorithm.The discovery algorithm enriches MWS and user requests semantically with the functional and non-functional properties of Ontology Web Language for Services,such as Quality of Web Service,device context,and user preferences.The WS repository is filtered based on logical reasoning and a parameter-based matching algorithm to minimize the matching space and improve runtime performance.The cosine similarity between the user request and services repository is then assessed to generate the most relevant WS.The relationships among concepts in the ontology are considered to improve the recall and precision ratio.After the WS discovery process,users can invoke and test these services in a mobile environment through a dynamic user interface.The interface of the invocation process is changed according to the WS description document.An application prototype is also developed to evaluate the framework based on a Cordova cross-mobile development framework.
文摘In any organization where SOA has been implemented, all of the web services are registered in UDDI and users’ needs are served by using appropriate web services. So in this paper, we will try to discover a service from repository first that can provide the required output to the user. The process becomes difficult when a single service is not able to fulfill a user’s need and we need a combination of services to answer complex needs of users. In our paper, we will suggest a simpler approach for dynamic service composition using a graph based methodology. This will be a design time service composition. This approach uses the functional and non-functional parameters of the services to select the most suitable services for composition as per user’s need. This approach involves “service classification” on the basis of functional parameters, “service discovery” on the basis of user’s need and then “service composition” using the selected services on the basis of non-functional parameters like response time, cost, security and availability. Another challenge in SOA implementation is that, once the composition has performed, some services may become faulty at runtime and may stop the entire process of serving a user’s need. So, we will also describe a way of “dynamic service reconfiguration” in our approach that will enable us to identify and replace a faulty service that is violating the SLA or is not accessible anymore. This service reconfiguration is done without redoing or reconfiguring the entire composition. In the end, to simulate the proposed approach, we will represent a prototype application built on php 5.4 using My SQL database at backend.