Objective To evaluate the different influences of anterior and posterior correction and fusion approaches upon disc wedging in adolescent idiopathic thoracolumbar/lumbar scoliosis.Methods The retrospective study was c...Objective To evaluate the different influences of anterior and posterior correction and fusion approaches upon disc wedging in adolescent idiopathic thoracolumbar/lumbar scoliosis.Methods The retrospective study was conducted with the medical records and radiographs of adolescent idiopathic thoracolumbar/lumbar scoliosis patients that underwent anterior(group A) or posterior(group B) correction and fusion surgery from December 1998 to May 2008.The correction of the main curve and changes of the disc wedging were analyzed.Results Fifty-three patients were included,26 in group A and 27 in group B.The mean coronal Cobb angles of the main curve in group A and group B were significantly corrected after surgery(P<0.05),with an average correction rate of 75.2% and 88.2%,respectively.Upon final follow-up,the coronal Cobb angles of the two groups were 18.9°±11.1° and 7.7°±5.6°,respectively,with an average correction loss of 6.8°±6.5° and 2.7°±3.3°,respectively.The coronal Cobb angle after operation and at final follow-up,and the correction rate were significantly better in group B than those in group A(P<0.05),while the coronal Cobb angle loss in group A was greater than that in group B(P<0.05).The disc wedging before operation,after operation,and at final follow-up were 3.2°±3.0°,5.7°±3.0°,and 8.6°±4.4° in group A,and 2.4°±3.2°,3.3°±3.4°,and 3.7°±3.6° in group B,respectively.Postoperative disc wedging was significantly larger compared with preoperative measurements in group A(P<0.05),but not in group B(P>0.05).The difference between disc wedging at final follow-up and that after surgery was significant in group A(P<0.05),but not in group B(P>0.05).Between the two groups,group A had larger disc angles after operation and at final follow-up(P<0.05),and a greater loss of disc angle(P<0.05).Conclusion For adolescent idiopathic thoracolumbar/lumbar scoliosis,posterior approach using all pedicle screws might produce a better result in terms of disc wedging compared with anterior approach.展开更多
The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and...The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and dynamic process. Planar strain clutch models including roller, inner-ring and outer-ring were built, and transient wedging process was analyzed with an explicit dynamics meth- od. The modeling of stress and strain distribution and variation of two kinds of contact surfaces show that there are three stages named slipping, wedging and binding respectively during whole wed- ging process. Meanwhile the geometric structures of contact surfaces greatly influence the peak stress and strain distribution of the wedging process of the roller and inner-ring. The load bearing performance of contact surfaces with logarithmic spiral curve is better than that with straight line. Our study provides theoretical foundation for design and further optimization of wedging contact surface of an overrunning clutch in a dual-turbine hydrodynamic torque converter.展开更多
The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo...The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.展开更多
On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts we...On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important...The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.展开更多
The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.M...The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.Moreover,a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence.The Mach number spans the interval from 1.5 to 12.The wedge angles(θ)are from 5°to 25°.The pressure ratio(P2/P1)is reported at various locations(x/L)along the 2D wedge.The results of the numerical simulations are compared with the regression model showing good agreement.展开更多
BACKGROUND The inflammatory myofibroblastic tumor(IMT)is a rare mesenquimal tumor of doubtful biological behaviour.It’s characterised for affecting mainly children and young adults,although it can appear at any age,b...BACKGROUND The inflammatory myofibroblastic tumor(IMT)is a rare mesenquimal tumor of doubtful biological behaviour.It’s characterised for affecting mainly children and young adults,although it can appear at any age,being the lungs the primary affected organ(in children it represents 20%of all primary pulmonary tumors).CASE SUMMARY We present the case of a 45 year old woman,with a computed tomography(CT)finding of injury on the anterior surface of the fundus/gastric body and a solid perigastric injury of 12 mm in the ecoendoscopy.The case is presented in the tumor committee deciding to perform a laparoscopic wedge resection.The histological diagnosis was a IMT.The diagnosis is based on imaging tests like the abdominal CT,abdominal ecography and the ecoendoscopy but to confirm the diagnosis a pathological study is necessary.CONCLUSION Due to the unpredictable nature of this tumor,surgical resection is the best therapeutic option.展开更多
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of...We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.展开更多
Undercut is one kind of important spaces to place the mining blocks in the mass underground mining. This structure is also used as a compensation space during blasting. In the process of underground mining in the frag...Undercut is one kind of important spaces to place the mining blocks in the mass underground mining. This structure is also used as a compensation space during blasting. In the process of underground mining in the fragment orebody, it is important and critical to analyze the stability and blockage of the three-dimensional wedges created around the undercut space. The wedge stability is mainly controlled by factors including geometry (i.e., the size, shape and spatial location of the wedge and undercut), the strength (shear and tensile) of the discontinuities that created the wedge, and the stress distribution within the rock mass. The Unwedge software was used to conduct the orthogonal simulation tests (three factors and five levels) that considered different cross sections, trends, and plunges of the undercut space. The results demonstrate that the control value of the safety factor of wedge is set to be 1.2. The optimal parameters are determined in the undercut space, such as the blasting fragmentation, orientation of the fluid flow, and the equipment gradeability;the wedge stability can be evaluated in the light of the block images and continuous falling;the stability of the key block meets the needs of the undercut space, the parameters gained are reasonable and optimal. Cross section is 27°, trend is from 315°to 325°(it is 320°at in-suit test) and plunge is 5°.展开更多
A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-...A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.展开更多
By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two s...By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.展开更多
文摘Objective To evaluate the different influences of anterior and posterior correction and fusion approaches upon disc wedging in adolescent idiopathic thoracolumbar/lumbar scoliosis.Methods The retrospective study was conducted with the medical records and radiographs of adolescent idiopathic thoracolumbar/lumbar scoliosis patients that underwent anterior(group A) or posterior(group B) correction and fusion surgery from December 1998 to May 2008.The correction of the main curve and changes of the disc wedging were analyzed.Results Fifty-three patients were included,26 in group A and 27 in group B.The mean coronal Cobb angles of the main curve in group A and group B were significantly corrected after surgery(P<0.05),with an average correction rate of 75.2% and 88.2%,respectively.Upon final follow-up,the coronal Cobb angles of the two groups were 18.9°±11.1° and 7.7°±5.6°,respectively,with an average correction loss of 6.8°±6.5° and 2.7°±3.3°,respectively.The coronal Cobb angle after operation and at final follow-up,and the correction rate were significantly better in group B than those in group A(P<0.05),while the coronal Cobb angle loss in group A was greater than that in group B(P<0.05).The disc wedging before operation,after operation,and at final follow-up were 3.2°±3.0°,5.7°±3.0°,and 8.6°±4.4° in group A,and 2.4°±3.2°,3.3°±3.4°,and 3.7°±3.6° in group B,respectively.Postoperative disc wedging was significantly larger compared with preoperative measurements in group A(P<0.05),but not in group B(P>0.05).The difference between disc wedging at final follow-up and that after surgery was significant in group A(P<0.05),but not in group B(P>0.05).Between the two groups,group A had larger disc angles after operation and at final follow-up(P<0.05),and a greater loss of disc angle(P<0.05).Conclusion For adolescent idiopathic thoracolumbar/lumbar scoliosis,posterior approach using all pedicle screws might produce a better result in terms of disc wedging compared with anterior approach.
基金Supported by the National Natural Science Foundation of China(51475041)the Ministerial Level Advanced Research Foundation(40402060103)the Ministerial Basic Products Innovation Program(VTDP2104)
文摘The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and dynamic process. Planar strain clutch models including roller, inner-ring and outer-ring were built, and transient wedging process was analyzed with an explicit dynamics meth- od. The modeling of stress and strain distribution and variation of two kinds of contact surfaces show that there are three stages named slipping, wedging and binding respectively during whole wed- ging process. Meanwhile the geometric structures of contact surfaces greatly influence the peak stress and strain distribution of the wedging process of the roller and inner-ring. The load bearing performance of contact surfaces with logarithmic spiral curve is better than that with straight line. Our study provides theoretical foundation for design and further optimization of wedging contact surface of an overrunning clutch in a dual-turbine hydrodynamic torque converter.
基金funded by the National Natural Science Foundation of China(No.42076069).
文摘The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.
基金funded by the National Key R&D Program of China(2021YFE0111900)the China Postdoctoral Science Foundation(2023M730353)+1 种基金Major Program of National Natural Science Foundation of China(Grant No.42041006)Natural Science Basic Research Program of Shaanxi(Program No.2022JM-167).
文摘On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
基金Supported by National Natural Science Foundation of China(Grant Nos.51608521,51809264)Beijing Municipal Major Achievements Transformation and Industrialization Projects of Central Universities(Grant No.ZDZH20141141301)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYLJ06).
文摘The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
文摘The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.Moreover,a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence.The Mach number spans the interval from 1.5 to 12.The wedge angles(θ)are from 5°to 25°.The pressure ratio(P2/P1)is reported at various locations(x/L)along the 2D wedge.The results of the numerical simulations are compared with the regression model showing good agreement.
文摘BACKGROUND The inflammatory myofibroblastic tumor(IMT)is a rare mesenquimal tumor of doubtful biological behaviour.It’s characterised for affecting mainly children and young adults,although it can appear at any age,being the lungs the primary affected organ(in children it represents 20%of all primary pulmonary tumors).CASE SUMMARY We present the case of a 45 year old woman,with a computed tomography(CT)finding of injury on the anterior surface of the fundus/gastric body and a solid perigastric injury of 12 mm in the ecoendoscopy.The case is presented in the tumor committee deciding to perform a laparoscopic wedge resection.The histological diagnosis was a IMT.The diagnosis is based on imaging tests like the abdominal CT,abdominal ecography and the ecoendoscopy but to confirm the diagnosis a pathological study is necessary.CONCLUSION Due to the unpredictable nature of this tumor,surgical resection is the best therapeutic option.
文摘We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.
基金Project(2015CX005)supported by Innovation Driven Plan of Central South University,ChinaProject(2016zzts451)supported by the Graduate Innovation Fund of Central South University,China+1 种基金Project(2016JJ21)supported by the Fundamental Research Funds for the Hunan Province,ChinaProject(2012BAB14B01)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan Period of China
文摘Undercut is one kind of important spaces to place the mining blocks in the mass underground mining. This structure is also used as a compensation space during blasting. In the process of underground mining in the fragment orebody, it is important and critical to analyze the stability and blockage of the three-dimensional wedges created around the undercut space. The wedge stability is mainly controlled by factors including geometry (i.e., the size, shape and spatial location of the wedge and undercut), the strength (shear and tensile) of the discontinuities that created the wedge, and the stress distribution within the rock mass. The Unwedge software was used to conduct the orthogonal simulation tests (three factors and five levels) that considered different cross sections, trends, and plunges of the undercut space. The results demonstrate that the control value of the safety factor of wedge is set to be 1.2. The optimal parameters are determined in the undercut space, such as the blasting fragmentation, orientation of the fluid flow, and the equipment gradeability;the wedge stability can be evaluated in the light of the block images and continuous falling;the stability of the key block meets the needs of the undercut space, the parameters gained are reasonable and optimal. Cross section is 27°, trend is from 315°to 325°(it is 320°at in-suit test) and plunge is 5°.
基金sponsored by the One Hundred Person Project of the Chinese Academy of Sciences(No.17314059)the Natural ScienceFoundation of China(No.41372229)+1 种基金the Sichuan Province Outstanding Youth Foundation(Nos.2010JQ0033,KYTD201002)theOpening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection as well as the Research Foundation fothe Doctoral Program of Higher Education of China(Nos.20115122110007,20125122110002)
文摘A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.
文摘By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.