To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a ...To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate.展开更多
基金Funded by the Scientific and Technological Development Project of Yantai(No.2013JH020)
文摘To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate.