We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbation...For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.展开更多
In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integr...In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.展开更多
We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operat...We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operator and the order-theoretic fixed point theory. Moreover, we derive some properties of the metric projection operator in Banach spaces. As applications of our best approximation theorems, three fixed point theorems for non-self maps are established and proved under some conditions. Our results are generalizations and improvements of various recent results obtained by many authors.展开更多
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of t...The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.展开更多
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
文摘For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.
文摘In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.
基金supported by National Natural Science Foundation of China(Grant No.11371221)the Specialized Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20123705110001)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province
文摘We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operator and the order-theoretic fixed point theory. Moreover, we derive some properties of the metric projection operator in Banach spaces. As applications of our best approximation theorems, three fixed point theorems for non-self maps are established and proved under some conditions. Our results are generalizations and improvements of various recent results obtained by many authors.
基金supported by a Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth Framework Programme(No. MTKD-CT-2004-013389)
文摘The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.