This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typical...Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.展开更多
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
文摘Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.