We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ...In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ⊕_(1)^(n)M_(z)on the space⊕_(1)^(n)D_(β).Moreover,we prove that M_(z)^(n)(≥2)on Dβis unitarily equivalent to ⊕_(1)^(n)M_(z) on⊕_(1)^(n)D_(β) if and only if β=0.In addition,we completely characterize the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces z^(k)D_(β)(k≥1),and the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces S_(j)(0≤j<n).Abkar,Cao and Zhu[Complex Anal Oper Theory,2020,14:Art 58]pointed out that it is an important,natural,and difficult question in operator theory to identify the commutant of a bounded linear operator.They characterized the commutant A′( M_(z)^(n))of M_(z)^(n)on a family of analytic function spaces A_(α)^(2)(α∈R)on D(in fact,the family of spaces A_(α)^(2)(α∈R)is the same with the family of spaces D_(β)(β∈R))in terms of the multiplier algebra of the underlying function spaces.In this paper,we give a new characterization of the commutant A′( M_(z)^(n))of M_(z)^(n)on D_(β),and characterize the self-adjoint operators and unitary operators in A'(M_(z)^(n)).We find that the class of self-adjoint operators(unitary operators)in A'(M_(z)^(n))when β≠0 is different from the class of self-adjoint operators(unitary operators)in A′( M_(z)^(n))when β=0.展开更多
In this paper, linear combinations of composition operators acting on weighted Dirichlet spaces are studied. By using the first derivative of the kernel function, we obtain a lower estimate for the essential norms of ...In this paper, linear combinations of composition operators acting on weighted Dirichlet spaces are studied. By using the first derivative of the kernel function, we obtain a lower estimate for the essential norms of these operators acting on the Dirichlet space D and S2. For general weighted Dirichlet space, by using complex interpolation methods, we characterize the compactness of these operators induced by linear fractional self-maps of the disk.展开更多
The Carleson measures for weighted Dirichlet spaces had been characterized by Girela and Peláez,who also characterized the boundedness of Volterra type operators between weighted Dirichlet spaces.However,their ch...The Carleson measures for weighted Dirichlet spaces had been characterized by Girela and Peláez,who also characterized the boundedness of Volterra type operators between weighted Dirichlet spaces.However,their characterizations for the boundedness are not complete.In this paper,the author completely characterizes the boundedness and compactness of Volterra type operators from the weighted Dirichlet spaces D^(p)_(α)to _(Dβ)^(q)(-1<α,βand 0<p<q<∞),which essentially complete their works.Furthermore,the author investigates the order boundedness of Volterra type operators between weighted Dirichlet spaces.展开更多
The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and ...The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and have connections with many other areas of mathematics.In this survey we present some basic properties and recent results on F(p,q,s)spaces.展开更多
In this paper, we study the boundedness of the generalized Cesàro operator on the weighted Dirichlet spaces Dα={f∈H(D);‖f‖Dα^2=|f(0)|^2+∫D|f'(z)|^2(1-|z|^αdm(z)〈+∞},where -1 〈 α 〈+...In this paper, we study the boundedness of the generalized Cesàro operator on the weighted Dirichlet spaces Dα={f∈H(D);‖f‖Dα^2=|f(0)|^2+∫D|f'(z)|^2(1-|z|^αdm(z)〈+∞},where -1 〈 α 〈+∞ and H(D) is the class of all holomorphic functions on the unit disc D.展开更多
Let p>0 andνbe a normal function on[0,1).In this paper,several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space D_(ν)^(p)(D)i...Let p>0 andνbe a normal function on[0,1).In this paper,several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space D_(ν)^(p)(D)in the unit disc.展开更多
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
基金supported by the National Natural Science Foundation of China(12101179,12171138,12171373)the Natural Science Foundation of Hebei Province of China(A2022207001)。
文摘In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ⊕_(1)^(n)M_(z)on the space⊕_(1)^(n)D_(β).Moreover,we prove that M_(z)^(n)(≥2)on Dβis unitarily equivalent to ⊕_(1)^(n)M_(z) on⊕_(1)^(n)D_(β) if and only if β=0.In addition,we completely characterize the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces z^(k)D_(β)(k≥1),and the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces S_(j)(0≤j<n).Abkar,Cao and Zhu[Complex Anal Oper Theory,2020,14:Art 58]pointed out that it is an important,natural,and difficult question in operator theory to identify the commutant of a bounded linear operator.They characterized the commutant A′( M_(z)^(n))of M_(z)^(n)on a family of analytic function spaces A_(α)^(2)(α∈R)on D(in fact,the family of spaces A_(α)^(2)(α∈R)is the same with the family of spaces D_(β)(β∈R))in terms of the multiplier algebra of the underlying function spaces.In this paper,we give a new characterization of the commutant A′( M_(z)^(n))of M_(z)^(n)on D_(β),and characterize the self-adjoint operators and unitary operators in A'(M_(z)^(n)).We find that the class of self-adjoint operators(unitary operators)in A'(M_(z)^(n))when β≠0 is different from the class of self-adjoint operators(unitary operators)in A′( M_(z)^(n))when β=0.
文摘In this paper, linear combinations of composition operators acting on weighted Dirichlet spaces are studied. By using the first derivative of the kernel function, we obtain a lower estimate for the essential norms of these operators acting on the Dirichlet space D and S2. For general weighted Dirichlet space, by using complex interpolation methods, we characterize the compactness of these operators induced by linear fractional self-maps of the disk.
基金supported by the National Natural Science Foundation of China(No.11801094)。
文摘The Carleson measures for weighted Dirichlet spaces had been characterized by Girela and Peláez,who also characterized the boundedness of Volterra type operators between weighted Dirichlet spaces.However,their characterizations for the boundedness are not complete.In this paper,the author completely characterizes the boundedness and compactness of Volterra type operators from the weighted Dirichlet spaces D^(p)_(α)to _(Dβ)^(q)(-1<α,βand 0<p<q<∞),which essentially complete their works.Furthermore,the author investigates the order boundedness of Volterra type operators between weighted Dirichlet spaces.
文摘The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and have connections with many other areas of mathematics.In this survey we present some basic properties and recent results on F(p,q,s)spaces.
基金the National Natural Science Foundation of China (10471039) the Natural Science Foundation of Zhejiang Province (103104)the Natural Science Foundation of Huzhou City (2005YZ02)the Foundation of Huzhou Teachers'College (KX21030)
文摘In this paper, we study the boundedness of the generalized Cesàro operator on the weighted Dirichlet spaces Dα={f∈H(D);‖f‖Dα^2=|f(0)|^2+∫D|f'(z)|^2(1-|z|^αdm(z)〈+∞},where -1 〈 α 〈+∞ and H(D) is the class of all holomorphic functions on the unit disc D.
基金supported by the National Natural Science Foundation of China(Grant No.11942109).
文摘Let p>0 andνbe a normal function on[0,1).In this paper,several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space D_(ν)^(p)(D)in the unit disc.