Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand...Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确...为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。展开更多
Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or dista...Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff...Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.展开更多
In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈...In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
This paper is concerned with the application of weighted least square method in change point analysis. Testing shift in the mean normal observations with time varying variances as well as of a GARCH time series are co...This paper is concerned with the application of weighted least square method in change point analysis. Testing shift in the mean normal observations with time varying variances as well as of a GARCH time series are considered. For both cases, the weighted estimators are given and their asymptotic behaviors are studied. It is also described that how the resampling methods like Monte Carlo and bootstrap may be applied to compute the finite sample behavior of estimators.展开更多
For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method...For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.展开更多
The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on ...The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on the analysis of influencing factors to the weight selection, this paper develops a new method to choose the weights based on the measurement of confidence in frequency domain. Results show that it is more precise and robust than other methods, and can make up for the defect of sub-estimate to the slope of least squares method.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, t...The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, the coe?cient matrix obtained is symmetric and semi- positive de?nite. In this paper, the method is further examined critically. The e?ects of several parameters on the results of MWLS are investigated systematically by using a cantilever beam and an in?nite plate with a central circular hole. The numerical results are compared with those obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless method (GBMM). The investigated parameters include the type of approximations, the type of weight functions, the number of neighbors of an evaluation point, as well as the manner in which the neighbors of an evaluation point are determined. This study shows that the displacement accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM. Furthermore, MWLS is much more e?cient than GBMM. This study also shows that the instability of CBMM is mainly due to the neglect of the equi- librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are minimized in a weighted least-square sense.展开更多
In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are develope...In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.展开更多
基金the financial support of the National Natural Science Foundation of China(Grant No.42074016,42104025,42274057and 41704007)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30244)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22B0496)。
文摘Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
文摘为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。
文摘Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
文摘Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
文摘In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
文摘This paper is concerned with the application of weighted least square method in change point analysis. Testing shift in the mean normal observations with time varying variances as well as of a GARCH time series are considered. For both cases, the weighted estimators are given and their asymptotic behaviors are studied. It is also described that how the resampling methods like Monte Carlo and bootstrap may be applied to compute the finite sample behavior of estimators.
基金supported by the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the National Natural Science Foundation of China(Grant Nos.11173008,10974202,and 60978049)the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)
文摘For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.
基金supported by the National Natural Science Foundation(40874001)Key Laboratory of Surveying and Mapping Technology on Island and Reef,State Bureau of Surveying and Mapping(2010A01)
文摘The decorelation phenomena such as Low-SNR radar signal, shadows and layover caused by topography etc, causes phase data discontinuous and makes the result of unwrapping phase inaccurate or completely wrong. Based on the analysis of influencing factors to the weight selection, this paper develops a new method to choose the weights based on the measurement of confidence in frequency domain. Results show that it is more precise and robust than other methods, and can make up for the defect of sub-estimate to the slope of least squares method.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.
基金Project supported by the National Natural Science Foundation of China (No.10172052).
文摘The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, the coe?cient matrix obtained is symmetric and semi- positive de?nite. In this paper, the method is further examined critically. The e?ects of several parameters on the results of MWLS are investigated systematically by using a cantilever beam and an in?nite plate with a central circular hole. The numerical results are compared with those obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless method (GBMM). The investigated parameters include the type of approximations, the type of weight functions, the number of neighbors of an evaluation point, as well as the manner in which the neighbors of an evaluation point are determined. This study shows that the displacement accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM. Furthermore, MWLS is much more e?cient than GBMM. This study also shows that the instability of CBMM is mainly due to the neglect of the equi- librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are minimized in a weighted least-square sense.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B51)Natural Science Foundation of China (41174008)
文摘In this paper, an improved weighted least squares (WLS), together with autoregressive (AR) model, is proposed to improve prediction accuracy of earth rotation parameters(ERP). Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.