This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence cou...This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course.Then the paper presents a weighted Markov chain,a method which is used to predict the future incidence state.This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable.It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal.Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province.In summation,this paper proposes ways to improve the accuracy of the weighted Markov chain,specifically in the field of infection epidemiology.展开更多
Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-secti...Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.展开更多
基金supported in part by"National S&T Major Project Foundation of China"(2009ZX10004-904)Universities Natural Science Foundation of Jiangsu Province(09KJB330004),National Science Foundation Grant DMS-9971405National Institutes of Health Contract N01-HV-28183
文摘This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course.Then the paper presents a weighted Markov chain,a method which is used to predict the future incidence state.This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable.It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal.Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province.In summation,this paper proposes ways to improve the accuracy of the weighted Markov chain,specifically in the field of infection epidemiology.
基金The National Natural Science Foundation of China(No50738001)the National Basic Research Program of China (973Program) (No2006CB705501)
文摘Based on an available parking space occupancy (APSO) survey conducted in Nanjing, China, an APSO forecasting model is proposed. The APSO survey results indicate that the time series of APSO with different time-sections are periodical and self-similar, and the fluctuation of the APSO increases with the decrease in time-sections. Taking the short-time change behavior into account, an APSO forecasting model combined wavelet analysis and a weighted Markov chain is presented. In this model, an original APSO time series is first decomposed by wavelet analysis, and the results include low frequency signals representing the basic trends of APSO and several high frequency signals representing disturbances of the APSO. Then different Markov models are used to forecast the changes of low and high frequency signals, respectively. Finally, integrating the predicted results induces the final forecasted APSO. A case study verifies the applicability of the proposed model. The comparisons between measured and forecasted results show that the model is a competent model and its accuracy relies on real-time update of the APSO database.