Randomized weights neural networks have fast learning speed and good generalization performance with one single hidden layer structure. Input weighs of the hidden layer are produced randomly. By employing certain acti...Randomized weights neural networks have fast learning speed and good generalization performance with one single hidden layer structure. Input weighs of the hidden layer are produced randomly. By employing certain activation function, outputs of the hidden layer are calculated with some randomization. Output weights are computed using pseudo inverse. Mutual information can be used to measure mutual dependence of two variables quantitatively based on the probability theory. In this paper, these hidden layer’s outputs that relate to prediction variable closely are selected with the simple mutual information based feature selection method. These hidden nodes with high mutual information values are maintained as a new hidden layer. Thus, the size of the hidden layer is reduced. The new hidden layer’s output weights are learned with the pseudo inverse method. The proposed method is compared with the original randomized algorithms using concrete compressive strength benchmark dataset.展开更多
Bayesian network (BN) is a well-accepted framework for representing and inferring uncertain knowledge. As the qualitative abstraction of BN, qualitative probabilistic network (QPN) is introduced for probabilistic infe...Bayesian network (BN) is a well-accepted framework for representing and inferring uncertain knowledge. As the qualitative abstraction of BN, qualitative probabilistic network (QPN) is introduced for probabilistic inferences in a qualitative way. With much higher efficiency of inferences, QPNs are more suitable for real-time applications than BNs. However, the high abstraction level brings some inference conflicts and tends to pose a major obstacle to their applications. In order to eliminate the inference conflicts of QPN, in this paper, we begin by extending the QPN by adding a mutual-information-based weight (MI weight) to each qualitative influence in the QPN. The extended QPN is called MI-QPN. After obtaining the MI weights from the corresponding BN, we discuss the symmetry, transitivity and composition properties of the qualitative influences. Then we extend the general inference algorithm to implement the conflict-free inferences of MI-QPN. The feasibility of our method is verified by the results of the experiment.展开更多
In this study,efficient spectral line selection and wcightcd-avcraging-bascd processing schemes are proposed for the classification of laser-induced breakdown spectroscopy(UBS)measurements.For fast on-line classificat...In this study,efficient spectral line selection and wcightcd-avcraging-bascd processing schemes are proposed for the classification of laser-induced breakdown spectroscopy(UBS)measurements.For fast on-line classification,a set of representative spectral lines arc selected ami processed relying on the information metric,instead of the time consuming full spectrum based analysis.I he most informative spectral line sets arc investigated by the joint mutual information estimation(MIR)evaluated with the Gaussian kernel density,where dominant intensity peaks associated with the concentrated components arc not necessarily most valuable for classification.In order to further distinguish the characteristic patterns of die LIBS measured spectrum,two-dimensional spectral images are synthesized through column-wise concatenation of the peaks along with their neighbors.For fast classification while preserv ing die effect of distinctive peak patterns,column-wise Gaussian weighted averaging is applied to die synthesized images,yielding a favorable trade off between classification performance and computational complexity.To explore the applicability of the proposed schemes,two applications of alloy classification and skin cancer detection arc investigated with the multi-class and binary support vector machines classifiers,respectively.Ihc MIE measures associated with selected spectral lines in bodi applications show a strong correlation to the actual classification or detection accuracy,which enables to find out meaningful combinations of spectral lines.In addition,the peak patterns of the selected lines and their Gaussian weighted averaging with nciehbors of the selected peaks efficiently distineuish different classes of LIBS measured spectrum.展开更多
Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at eac...Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at each interval.Because all measurements are fused together to provide information in a fusion center,fusion weights of all selected nodes may affect the performance of target tracking.As far as we know,almost all existing tracking schemes neglect this problem.We study a weighted fusion scheme for target tracking in UWSNs.First,because the mutual information(MI)between a node’s measurement and the target state can quantify target information provided by the node,it is calculated to determine proper fusion weights.Second,we design a novel multi-sensor weighted particle filter(MSWPF)using fusion weights determined by MI.Third,we present a local node selection scheme based on posterior Cramer-Rao lower bound(PCRLB)to improve tracking efficiency.Finally,simulation results are presented to verify the performance improvement of our scheme with proper fusion weights.展开更多
A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror i...A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image.Moreover,the size of the airy disk,ultrasonic sensor properties,and thermal effects decrease the resolution.Thus,in this study,we proposed a spatial weight matrix(SWM)with a dimensionality reduction for image reconstruction.The three-layer SWM contains the invariable information of the system,which includes a spatial dependent distortion correction and 3D deconvolution.We employed an ordinal-valued Markov random field and the Harris Stephen algorithm,as well as a modified delay-and-sum method during a time reversal.The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM;this is also true for severely distorted images.The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index,on average.Moreover,the peak signal-to-noise ratio was increased by 17.08%after 3D deconvolution.This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM.展开更多
Rate Compatible Modulation(RCM)is an efficient technique for high spectral efficiency seamless transmission over highly dynamic wireless channels.However,its high decoding complexity at the receiver prevents it from b...Rate Compatible Modulation(RCM)is an efficient technique for high spectral efficiency seamless transmission over highly dynamic wireless channels.However,its high decoding complexity at the receiver prevents it from being applied in scenarios where computation resources are limited.To alleviate this problem,an RCM with variable weight sets(RCM-VWS)was presented in the literature to significantly reduce its complexity by employing weight sets of different complexities for channels at different signal-tonoise-ratio(SNR).However,RCM-VWS has to introduce an undesired feedback channel for the transmission of SNR information that is estimated at the receiver and transmitted back to the transmitter for weight set selection.To achieve a low computational complexity while avoiding feedback transmission at the same time,a novel RCM scheme with hybrid weight set(RCM-HWS)is introduced in this paper.A low complexity of decoding is allowed by gradually reducing the complexity of weight sets based on the number symbols already sent.It also avoids the feedback of SNRs since we can deduce SNRs from the number of the symbols transmitted and use a hybrid weight set we have designed.The theoretical analysisand simulation results show that the proposed scheme has the advantages of low demodulation complexity and not requiring feedback channel while maintaining the same transmission throughput as that of the conventional RCM.Therefore,the proposed scheme has a wider range of applications,especially in the case that feedback channel is not available.展开更多
运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互...运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.展开更多
文摘Randomized weights neural networks have fast learning speed and good generalization performance with one single hidden layer structure. Input weighs of the hidden layer are produced randomly. By employing certain activation function, outputs of the hidden layer are calculated with some randomization. Output weights are computed using pseudo inverse. Mutual information can be used to measure mutual dependence of two variables quantitatively based on the probability theory. In this paper, these hidden layer’s outputs that relate to prediction variable closely are selected with the simple mutual information based feature selection method. These hidden nodes with high mutual information values are maintained as a new hidden layer. Thus, the size of the hidden layer is reduced. The new hidden layer’s output weights are learned with the pseudo inverse method. The proposed method is compared with the original randomized algorithms using concrete compressive strength benchmark dataset.
文摘Bayesian network (BN) is a well-accepted framework for representing and inferring uncertain knowledge. As the qualitative abstraction of BN, qualitative probabilistic network (QPN) is introduced for probabilistic inferences in a qualitative way. With much higher efficiency of inferences, QPNs are more suitable for real-time applications than BNs. However, the high abstraction level brings some inference conflicts and tends to pose a major obstacle to their applications. In order to eliminate the inference conflicts of QPN, in this paper, we begin by extending the QPN by adding a mutual-information-based weight (MI weight) to each qualitative influence in the QPN. The extended QPN is called MI-QPN. After obtaining the MI weights from the corresponding BN, we discuss the symmetry, transitivity and composition properties of the qualitative influences. Then we extend the general inference algorithm to implement the conflict-free inferences of MI-QPN. The feasibility of our method is verified by the results of the experiment.
文摘In this study,efficient spectral line selection and wcightcd-avcraging-bascd processing schemes are proposed for the classification of laser-induced breakdown spectroscopy(UBS)measurements.For fast on-line classification,a set of representative spectral lines arc selected ami processed relying on the information metric,instead of the time consuming full spectrum based analysis.I he most informative spectral line sets arc investigated by the joint mutual information estimation(MIR)evaluated with the Gaussian kernel density,where dominant intensity peaks associated with the concentrated components arc not necessarily most valuable for classification.In order to further distinguish the characteristic patterns of die LIBS measured spectrum,two-dimensional spectral images are synthesized through column-wise concatenation of the peaks along with their neighbors.For fast classification while preserv ing die effect of distinctive peak patterns,column-wise Gaussian weighted averaging is applied to die synthesized images,yielding a favorable trade off between classification performance and computational complexity.To explore the applicability of the proposed schemes,two applications of alloy classification and skin cancer detection arc investigated with the multi-class and binary support vector machines classifiers,respectively.Ihc MIE measures associated with selected spectral lines in bodi applications show a strong correlation to the actual classification or detection accuracy,which enables to find out meaningful combinations of spectral lines.In addition,the peak patterns of the selected lines and their Gaussian weighted averaging with nciehbors of the selected peaks efficiently distineuish different classes of LIBS measured spectrum.
基金Project supported by the National Natural Science Foundation of China(Nos.61531015,61673345,and 61374021)the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(Nos.U1609204 and U1709203)
文摘Underwater wireless sensor networks(UWSNs)can provide a promising solution to underwater target tracking.Due to limited energy and bandwidth resources,only a small number of nodes are selected to track a target at each interval.Because all measurements are fused together to provide information in a fusion center,fusion weights of all selected nodes may affect the performance of target tracking.As far as we know,almost all existing tracking schemes neglect this problem.We study a weighted fusion scheme for target tracking in UWSNs.First,because the mutual information(MI)between a node’s measurement and the target state can quantify target information provided by the node,it is calculated to determine proper fusion weights.Second,we design a novel multi-sensor weighted particle filter(MSWPF)using fusion weights determined by MI.Third,we present a local node selection scheme based on posterior Cramer-Rao lower bound(PCRLB)to improve tracking efficiency.Finally,simulation results are presented to verify the performance improvement of our scheme with proper fusion weights.
基金supported by National Natural Science Foundation of China,Nos.61822505,11774101,61627827Science and Technology Planning Project of Guangdong Province,No.2015B020233016+2 种基金China Postdoctoral Science Foundation,No.2019 M652943Natural Science Foundation of Guangdong Province,No.2019A1515011399Guangzhou Science and Technology Program key projects,Nos.2019050001.
文摘A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image.Moreover,the size of the airy disk,ultrasonic sensor properties,and thermal effects decrease the resolution.Thus,in this study,we proposed a spatial weight matrix(SWM)with a dimensionality reduction for image reconstruction.The three-layer SWM contains the invariable information of the system,which includes a spatial dependent distortion correction and 3D deconvolution.We employed an ordinal-valued Markov random field and the Harris Stephen algorithm,as well as a modified delay-and-sum method during a time reversal.The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM;this is also true for severely distorted images.The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index,on average.Moreover,the peak signal-to-noise ratio was increased by 17.08%after 3D deconvolution.This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.61971452 and Grant No.91538203supported by the Fundamental Research Funds for the Central Universities Grant SCUEC-CZY19038
文摘Rate Compatible Modulation(RCM)is an efficient technique for high spectral efficiency seamless transmission over highly dynamic wireless channels.However,its high decoding complexity at the receiver prevents it from being applied in scenarios where computation resources are limited.To alleviate this problem,an RCM with variable weight sets(RCM-VWS)was presented in the literature to significantly reduce its complexity by employing weight sets of different complexities for channels at different signal-tonoise-ratio(SNR).However,RCM-VWS has to introduce an undesired feedback channel for the transmission of SNR information that is estimated at the receiver and transmitted back to the transmitter for weight set selection.To achieve a low computational complexity while avoiding feedback transmission at the same time,a novel RCM scheme with hybrid weight set(RCM-HWS)is introduced in this paper.A low complexity of decoding is allowed by gradually reducing the complexity of weight sets based on the number symbols already sent.It also avoids the feedback of SNRs since we can deduce SNRs from the number of the symbols transmitted and use a hybrid weight set we have designed.The theoretical analysisand simulation results show that the proposed scheme has the advantages of low demodulation complexity and not requiring feedback channel while maintaining the same transmission throughput as that of the conventional RCM.Therefore,the proposed scheme has a wider range of applications,especially in the case that feedback channel is not available.
文摘运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.