In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ...In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.展开更多
Increasing attention has been attracted to the dynamic performance and safety of advanced performance predictive control systems of the next-generation aeroengine.The latest research demonstrates that Subspace-based I...Increasing attention has been attracted to the dynamic performance and safety of advanced performance predictive control systems of the next-generation aeroengine.The latest research demonstrates that Subspace-based Improved Model Predictive Control(SIMPC)can overcome the difficulty in solving the predictive model in MPC/NMPC applications.However,applying constant design parameters cannot maintain consistent control effects in all states.Meanwhile,the designed system relies too much on sensor-measured data,and thus it is difficult to thoroughly validate the safety of the system because of its high complexity.This means that any potential hardware/software faults will endanger the engine.Therefore,this paper first presents a novel nonlinear mapping relationship to adaptively tune the tracking weight online with the change of Power Lever Angle(PLA)and real-time relative tracking error.Thus,without introducing additional design parameters,an Adaptive Tracking Weight-based SIMPC(ATW-SIMPC)controller is designed to improve the control performance in all operating states effectively.Then,a Primary/Backup Hybrid Control(PBHC)strategy with the ATW-SIMPC controller as the primary system and the traditional speed(Nf)controller as the backup system is proposed to ensure safety.The designed affiliated switching controller and the real-time monitor therein can be used to realize reasonable and smooth switching between primary/backup systems,so as to avoid bump transition.The PBHC system switches to the Nf controller when the ATW-SIMPC controller is wrong because of potential hardware/software faults;otherwise,the ATW-SIMPC controller keeps acting on the engine.The main results prove that the ATW-SIMPC controller with the optimal nonlinear mapping relationship,compared with the existing SIMPC controller,uplifts the dynamic control performance by 32%and reduces overshoots to an allowable limit,resulting in a better control effect in full state.The comparison results consistently indicate that the PBHC can guarantee engine safety in occurrence of hardware/software faults,such as sensor/onboard adaptive model faults.The approach proposed is applicable to the design of a model-based engine intelligent control system.展开更多
The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active swit...The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.展开更多
This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatl...This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model...Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.展开更多
Multiple-model predictive control(MMPC) is a fundamental icing tolerance envelope protection(ITEP) design method that can systematically handle nonlinear and time-varying constraints. However, few studies have address...Multiple-model predictive control(MMPC) is a fundamental icing tolerance envelope protection(ITEP) design method that can systematically handle nonlinear and time-varying constraints. However, few studies have addressed the envelope protection failure that results from the inaccurate prediction of multiple linear predictive models when actual conditions deviate from design conditions. In this study, weights that vary with icing conditions and flight parameters are considered to develop an effective and reliable envelope protection control strategy. First, an ITEP structure based on variable-weighted MMPC was implemented to improve the protection performance with condition departure information. Then, a variable-weighted rule was proposed to guarantee the stability of variable-weighted MMPC. A design approach involving a variable-weighted function that uses icing conditions and flight parameters as arguments was also developed with the proposed rules. Finally, a systematic ITEP design method on variable-weighted MMPC was constructed with additional design criteria for other normal control parameters.Simulations were conducted, and the results show that the proposed method can effectively enhance ITEP performance.展开更多
文摘In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.
基金National Natural Science Foundation of China (Nos. 52176009, 51906103) for financial support
文摘Increasing attention has been attracted to the dynamic performance and safety of advanced performance predictive control systems of the next-generation aeroengine.The latest research demonstrates that Subspace-based Improved Model Predictive Control(SIMPC)can overcome the difficulty in solving the predictive model in MPC/NMPC applications.However,applying constant design parameters cannot maintain consistent control effects in all states.Meanwhile,the designed system relies too much on sensor-measured data,and thus it is difficult to thoroughly validate the safety of the system because of its high complexity.This means that any potential hardware/software faults will endanger the engine.Therefore,this paper first presents a novel nonlinear mapping relationship to adaptively tune the tracking weight online with the change of Power Lever Angle(PLA)and real-time relative tracking error.Thus,without introducing additional design parameters,an Adaptive Tracking Weight-based SIMPC(ATW-SIMPC)controller is designed to improve the control performance in all operating states effectively.Then,a Primary/Backup Hybrid Control(PBHC)strategy with the ATW-SIMPC controller as the primary system and the traditional speed(Nf)controller as the backup system is proposed to ensure safety.The designed affiliated switching controller and the real-time monitor therein can be used to realize reasonable and smooth switching between primary/backup systems,so as to avoid bump transition.The PBHC system switches to the Nf controller when the ATW-SIMPC controller is wrong because of potential hardware/software faults;otherwise,the ATW-SIMPC controller keeps acting on the engine.The main results prove that the ATW-SIMPC controller with the optimal nonlinear mapping relationship,compared with the existing SIMPC controller,uplifts the dynamic control performance by 32%and reduces overshoots to an allowable limit,resulting in a better control effect in full state.The comparison results consistently indicate that the PBHC can guarantee engine safety in occurrence of hardware/software faults,such as sensor/onboard adaptive model faults.The approach proposed is applicable to the design of a model-based engine intelligent control system.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4201602)the National Natural Science Foundation of China(Grant No.52002409).
文摘The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.
文摘This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
基金National Natural Science Foundation of China(No.51867012)。
文摘Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.
基金supported by the Fundamental Research Funds for Central Universities (Grant No. YWF-21-BJ-J-935)。
文摘Multiple-model predictive control(MMPC) is a fundamental icing tolerance envelope protection(ITEP) design method that can systematically handle nonlinear and time-varying constraints. However, few studies have addressed the envelope protection failure that results from the inaccurate prediction of multiple linear predictive models when actual conditions deviate from design conditions. In this study, weights that vary with icing conditions and flight parameters are considered to develop an effective and reliable envelope protection control strategy. First, an ITEP structure based on variable-weighted MMPC was implemented to improve the protection performance with condition departure information. Then, a variable-weighted rule was proposed to guarantee the stability of variable-weighted MMPC. A design approach involving a variable-weighted function that uses icing conditions and flight parameters as arguments was also developed with the proposed rules. Finally, a systematic ITEP design method on variable-weighted MMPC was constructed with additional design criteria for other normal control parameters.Simulations were conducted, and the results show that the proposed method can effectively enhance ITEP performance.