The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
Based on the text orientation classification, a new measurement approach to semantic orientation of words was proposed. According to the integrated and detailed definition of words in HowNet, seed sets including the w...Based on the text orientation classification, a new measurement approach to semantic orientation of words was proposed. According to the integrated and detailed definition of words in HowNet, seed sets including the words with intense orientations were built up. The orientation similarity between the seed words and the given word was then calculated using the sentiment weight priority to recognize the semantic orientation of common words. Finally, the words' semantic orientation and the context were combined to recognize the given words' orientation. The experiments show that the measurement approach achieves better results for common words' orientation classification and contributes particularly to the text orientation classification of large granularities.展开更多
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
基金supported by the National Natural Science Foundation of China (50375010).
文摘Based on the text orientation classification, a new measurement approach to semantic orientation of words was proposed. According to the integrated and detailed definition of words in HowNet, seed sets including the words with intense orientations were built up. The orientation similarity between the seed words and the given word was then calculated using the sentiment weight priority to recognize the semantic orientation of common words. Finally, the words' semantic orientation and the context were combined to recognize the given words' orientation. The experiments show that the measurement approach achieves better results for common words' orientation classification and contributes particularly to the text orientation classification of large granularities.