By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exist...By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exists a system of local coordinate which is normalized at a point v ∈M = T1.0M/o(M), and then the horizontal Laplace operator NH for differential forms on PTM is defined by the horizontal part of the Chern-Finsler connection and its curvature tensor, and the horizontal Laplace operator H on holomorphic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic line bundle over PTM is also obtained展开更多
基金Supported by the National Natural Science Foundation of China (10571144,10771174)Program for New Centery Excellent Talents in Xiamen University
文摘By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exists a system of local coordinate which is normalized at a point v ∈M = T1.0M/o(M), and then the horizontal Laplace operator NH for differential forms on PTM is defined by the horizontal part of the Chern-Finsler connection and its curvature tensor, and the horizontal Laplace operator H on holomorphic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic line bundle over PTM is also obtained