The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire f...The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.展开更多
Realizing of weld penetration control in gas tungsten arc welding requires establishment of a model describing the relationship between the front-side geometrical parameters of weld pool and the back-side weld width w...Realizing of weld penetration control in gas tungsten arc welding requires establishment of a model describing the relationship between the front-side geometrical parameters of weld pool and the back-side weld width with sufficient accuracy. A neural network model is developed to attain this aim. Welding experiments are conducted to obtain the training data set (including 973 groups of geometrical parameters of the weld pool and back-side weld width) and the verifying data set (108 groups). Two data sets are used for training and verifying the neural network, respectively. The testing results show that the model has sufficient accuracy and can meet the requirements of weld penetration control.展开更多
In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. Th...In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.展开更多
The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temp...The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temperature field finite element numerical simulation model of twin arc movement is established. The loading form of twin-arc with double ellipsoid heat source is discussed. The molten pool temperature field of twin-arc submerged arc welding is calculated and analyzed under different process parameters. The law of molten pool characteristics influenced by the welding speed, current and voltage of twin-arc submerged arc welding parameters is analyzed. The relation between shaping feature of molten pool and weld formation is discussed according to the ratio of width to length. The results manifested that the width to length ratio of weld pool decreases with the improvement of welding speed, which result in gene- ration of weld defects. The width to length ratio of weld pool is increased by adjusting the proportion of the current, voltage and the distance of the two arcs, which avoids the generation of weld defects.展开更多
The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum a...The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum alloy is investigated by using factorial design approach. Variable polarity plasma arc welding is used for welding aluminum alloy. Trail experiments are conducted and the limits of the input process parameters are decided. Two levels and four input process parameters are chosen and experiments are conducted as per typical design matrix considering full factorial design. Total sixteen experiments are conducted and output responses are measured. The coefficients are calculated by using regression analysis and the mathematical models are constructed. By using the mathematical models the main and interaction effect of various process parameters on weld quality is studied.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
文摘The effects of process parameters on the depth-to-width ratio (D/W) of flux-cored wire underwater wet welding with a certain type of homemade .flux-cored wire are studied. It is found that the welding .speed, wire feeding speed and torch oscillating amplitude hare significant effects on the dopth-to-width ratio (D/W) of welds. The D/W ratio of welds increases significantly with the increase of welding speed without the oscillating of welding torch. It increased (from 0. 14 to 0. 26 ) with the increase of wire feeding speed while the torch oscillating. And it decreased linearly with the increase of torch oscillating amplitude. However, the influelwe of oscillating speed, wire extension and welding voltage on the D/W ratio of welds was not obvious.
基金the Shandong Provincial Natural Science Foundation of China (No. Z2003F05 ).
文摘Realizing of weld penetration control in gas tungsten arc welding requires establishment of a model describing the relationship between the front-side geometrical parameters of weld pool and the back-side weld width with sufficient accuracy. A neural network model is developed to attain this aim. Welding experiments are conducted to obtain the training data set (including 973 groups of geometrical parameters of the weld pool and back-side weld width) and the verifying data set (108 groups). Two data sets are used for training and verifying the neural network, respectively. The testing results show that the model has sufficient accuracy and can meet the requirements of weld penetration control.
基金supported by National Natural Science Foundation of China(No.51565040)Science and Technology Planning Project of Jiangxi Province(20151BBE50034,20133BBE50021)Aviation Science Funds of China(2014ZE56016)
文摘In this study,adopting uniform design method established a mathematical model to prepare multi-element active flux. GH4169 superalloy plates were welded by the Nd: YAG laser equipment with the prepared active flux. The results show all kinds of fluxes increase the depth to width ratio and the multi-component systems are more significant. The largest increment of the weld depth to width ratio is 159%,obtained by using of the F12 series flux. It is proved that by using of the active flux to increase the depth to width ratio of micro laser welding is feasible.
文摘The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temperature field finite element numerical simulation model of twin arc movement is established. The loading form of twin-arc with double ellipsoid heat source is discussed. The molten pool temperature field of twin-arc submerged arc welding is calculated and analyzed under different process parameters. The law of molten pool characteristics influenced by the welding speed, current and voltage of twin-arc submerged arc welding parameters is analyzed. The relation between shaping feature of molten pool and weld formation is discussed according to the ratio of width to length. The results manifested that the width to length ratio of weld pool decreases with the improvement of welding speed, which result in gene- ration of weld defects. The width to length ratio of weld pool is increased by adjusting the proportion of the current, voltage and the distance of the two arcs, which avoids the generation of weld defects.
文摘The effect of various process parameters like welding current, torch height, welding speed and plasma gas flow rate on front melting width, back melting width and weld reinforcement of plasma arc welding on aluminum alloy is investigated by using factorial design approach. Variable polarity plasma arc welding is used for welding aluminum alloy. Trail experiments are conducted and the limits of the input process parameters are decided. Two levels and four input process parameters are chosen and experiments are conducted as per typical design matrix considering full factorial design. Total sixteen experiments are conducted and output responses are measured. The coefficients are calculated by using regression analysis and the mathematical models are constructed. By using the mathematical models the main and interaction effect of various process parameters on weld quality is studied.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.