期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Research on the properties of MAG welded joint of X65 pipeline steel
1
作者 李建军 杜乃成 +2 位作者 王义 周文波 周何 《China Welding》 EI CAS 2013年第3期56-59,共4页
With the worldwide pipeline construction boom, the pipeline welding technology has rapidly developed. Considering the needs of some projects, many tests of mechanical properties of X65 pipeline steel metal active-gus ... With the worldwide pipeline construction boom, the pipeline welding technology has rapidly developed. Considering the needs of some projects, many tests of mechanical properties of X65 pipeline steel metal active-gus (MAG) welded joint have been carried out, and so do the analysis of metallographic structure characteristics and the impact fracture appearance of joint. The results show that, using MAG welding, the test data of mechanical properties of their girth welded joint are in conformity with the relevant technical standards ( API1104 ). MAG welding with COz protection has the characteristics of low hydrogen, energy-saving and environmental protection. Therefore, it should be noted to develop the welding materials and equipments vigorously for this welding method. 展开更多
关键词 X65 MAG welding properties of welded joint fracture appearance
下载PDF
Interfacial Microstructure and Mechanical Properties of Al/Mg Butt Joints Made by MIG Welding Process with Zn-Cd Alloy as Interlayer 被引量:6
2
作者 张洪涛 DAI Xiangyu FENG Jicai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1258-1264,共7页
Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were o... Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were obtained. Intermetallic compound layer 1 and layer 2 had formed in fusion zone/Mg alloy and the average thickness of the layer 1 was about 50 μm. The intermetallic compound layer 1 consisted of Al12Mg17 and Mg2Si phases while layer 2 consisted of Al12Mg17, Mg2Si and Mg Zn2 phases. The crack started from the IMC layer at the bottom of the joint and propagated along the brittle IMC layer, then expanded into weld metal during the SEM in situ tensile test. The highest tensile strength of the dissimilar metal butt joints could reach 46.8 MPa and the effect ofinterfacial IMC layer on mechanical property of the joint was discussed in detail in the present study. 展开更多
关键词 metal inert gas welding aluminum magnesium microstructure mechanical property
下载PDF
Constitutive Model of Friction Stir Weld with Consideration of its Inhomogeneous Mechanical Properties 被引量:3
3
作者 ZHANG Ling MIN Junying +3 位作者 WANG Bin LIN Jianping LI Fangfang LIU Jing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期357-364,共8页
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis... In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming. 展开更多
关键词 constitutive model inhomogeneous mechanical property friction stir welding tailor welded blanks
下载PDF
Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates 被引量:1
4
作者 Ali Alavi Nia Ali Shirazi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期799-809,共11页
Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the mate... Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated. 展开更多
关键词 copper friction stir welding mechanical properties microstructure
下载PDF
Microstructure and properties of pure iron/copper composite cladding layers on carbon steel 被引量:3
5
作者 Long Wan Yong-xian Huang +2 位作者 Shi-xiong Lü Ti-fang Huang Zong-liang Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期920-927,共8页
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o... In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron. 展开更多
关键词 tungsten inert gas welding metal cladding pure iron copper carbon steel interfacial properties
下载PDF
Effect of Post-weld Heat Treatment on Mechanical Characteristics of AZ31 Magnesium Alloy Welded Joints 被引量:1
6
作者 闫志峰 张红霞 +2 位作者 DUAN Jinwen LIU Fei WANG Guilei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1205-1212,共8页
Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical prope... Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints. 展开更多
关键词 magnesium alloy welded joint heat treatments microstructure mechanical properties
下载PDF
Mapping relationship analysis of welding assembly properties for thin-walled parts with finite element and machine learning algorithm
7
作者 Pan Minghui Liao Wenhe +1 位作者 Xing Yan Tang Wencheng 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期126-136,共11页
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ... The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future. 展开更多
关键词 parallel T-shaped thin-walled parts welding assembly property finite element analysis mapping relationship machine learning algorithm
下载PDF
Laser welding of AZ61 magnesium-based alloys Laser welding of AZ61 magnesium-based alloys 被引量:3
8
作者 王红英 李志军 张亦慧 《China Welding》 EI CAS 2006年第3期29-33,共5页
Laser welding of AZ61 magnesium alloys was carried out using a CO2 laser welding experimental system. The welding properties of AZ61 sheets with different thickness were investigated. The effect of processing paramete... Laser welding of AZ61 magnesium alloys was carried out using a CO2 laser welding experimental system. The welding properties of AZ61 sheets with different thickness were investigated. The effect of processing parameters including laser power, welding speed and protection gas flow was researched. The results show that laser power and welding speed have large effect on the weld width and joint dimensions. Protection gas flow has relatively slight effect on the weld width. The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal, Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method. The microstructure with small grains in weld zone is believed to be respoasible for the excellent mechanical properties of AZ61 joints. 展开更多
关键词 magnesium alloys laser welding weld properties process parameters
下载PDF
Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints 被引量:11
9
作者 Yuqing Mao Liming Ke +2 位作者 Yuhua Chen Fencheng Liu Li Xing 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期228-236,共9页
In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was inve... In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was investigated. The results showed that the microstructure including the grain size, the degree of dynamic recrystallization, the misorientation angle distribution and the precipitation phase containing its size, type and content exhibited a gradient distribution along the thickness direction. The testing results of mechanical properties of the slices showed that the nugget was gradually weakened along the depth from the top to the bottom. The maximum ultimate tensile strength, yield strength and elongation of the slice in the nugget top-middle are obtained, which are 415 MPa, 255 MPa and 8.1%, respectively. 展开更多
关键词 AA7075 thick plate Friction stir welding Nugget Heterogeneity Microstructure Mechanical properties
原文传递
Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces 被引量:4
10
作者 Xiangqian Liu Huijie Liu +2 位作者 Tianhao Wang Xiangguo Wang Si Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期102-111,共10页
The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains... The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains, in which a low density of equilibrium phase β is observed. The grains in the thermo-mechanically affected zone (TMAZ) are elongated, and the highest density of dislocations and a low density of β precipitates can be found in grains. The heat affected zone (HAZ) only experiences a low thermal cycle, and a high density of β precipitates and a low density of β precipitates remain in the coarsened grains. The microhardness evolutions in the NZ, TMAZ and HAZ are governed by the grain refinement and dislocation strengthening, the dislocation and precipitation strengthening, and the precipitation and solid solution strengthening, respectively. When increasing the axial force, the changing trend of one strengthening mechanism is contrary to the other in each zone, and the microhardness increases in different zones. As a result, the tensile strength roughly increases with raising the axial force, and all joints show good tensile properties as the high welding speed inhibits the coarsening and dissolution of strengthening precipitates significantly. 展开更多
关键词 Aluminum hollow extrusions High-speed friction stir welding Microstructures Mechanical properties
原文传递
Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate 被引量:10
11
作者 Weifeng Xu Yuxuan Luo +1 位作者 Wei Zhang Mingwang Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期173-184,共12页
7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distributi... 7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process, The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW. 展开更多
关键词 Aluminum alloy Friction stir welding Bobbin tool Temperature distribution Microstructure Mechanical properties
原文传递
Effect of Heat Input on Fume Generation and Joint Properties of Gas Metal Arc Welded Austenitic Stainless Steel 被引量:7
12
作者 K Srinivasan V Balasubramanian 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期72-79,共8页
The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by AN... The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F1.2 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 1.15 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints. 展开更多
关键词 gas metal arc weldings fume generation rates austenitic stainless steels tensile property scanning electron microscopes X-ray florescence spectrometer
原文传递
Welding technique studies on the “West-East” pipeline project 被引量:1
13
作者 隋永莉 杜则裕 +1 位作者 黄福祥 祁励春 《China Welding》 EI CAS 2006年第2期73-76,共4页
This paper described the work of welding process design for the " West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, clim... This paper described the work of welding process design for the " West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, climate, culture and the flexibility of the welding methods, this work recommended the semi-automatic process at the east and middle sections and automatic process at the west section of the pipeline project. The manual process is recommended on the tie-in joints and repairs. The double joint pipe and the 3 joint pipe are recommended at the water net place and some in-ditch welding place to reduce the welding volume. Also the special redesigned bevels are recommended for the automatic process and the semiautomatic process. Through all destructive tests, the results shows the welds are meet the requirements of related standards, specifications and design documents. 展开更多
关键词 "West-East" welding technique process design mechanical properties of welded joint
下载PDF
Activated flux tungsten inert gas welding of 8 mm-thick AISI 304 austenitic stainless steel 被引量:6
14
作者 刘观辉 刘美华 +3 位作者 易耀勇 张宇鹏 罗子艺 许磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期800-805,共6页
AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 s... AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG(conventional TIG) welding. 展开更多
关键词 A-TIG welding activated flux 304 stainless steel full penetration mechanical properties
下载PDF
Local melting mechanism and its effects on mechanical properties of friction spot welded joint for Al-Zn-Mg-Cu alloy 被引量:5
15
作者 Yunqiang Zhao Chungui Wang +2 位作者 Jizhong Li Jinhong Tan Chunlin Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期185-191,共7页
Local melting and the eutectic film and liquation crack formation mechanisms during friction spot weld- ing (FSpW) of Al-Zn-Mg-Cu alloy were studied by both experiment and finite element simulation. Their effects on... Local melting and the eutectic film and liquation crack formation mechanisms during friction spot weld- ing (FSpW) of Al-Zn-Mg-Cu alloy were studied by both experiment and finite element simulation. Their effects on mechanical properties of the joint were examined. When the welding heat input was high, the peak temperature in the stir zone was higher than the incipient melting temperature of the Al-Zn-Mg-Cu alloy. This resulted in local melting along the grain boundaries in this zone. In the retreating stage of the welding process, the formed liquid phase was driven by the flowing plastic material and redistributed as a "U-shaped" line in the stir zone. In the following cooling stage, this liquid phase transformed into eutectic films and liquation cracks. As a result, a new characteristic of"U" line that consisted of eutectic films and liquation cracks is formed in the FSpWjoin. This "U" line was located in the high stress region when the FSpW joint was loaded, thus it was adverse to the mechanical properties of the FSpW joint. During tensile shear tests, the "U" line became a preferred crack propagation path, resulting in the occurrence of brittle fracture. 展开更多
关键词 Friction spot welding Numerical simulation Local melting Liquation crack Mechanical property
原文传递
Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature 被引量:1
16
作者 Yi-jun Li Rui-dong Fu +2 位作者 Yan Li Yan Peng Hui-jie Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期157-162,共6页
This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-... This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal. 展开更多
关键词 High nitrogen steel Friction stir welding Post-weld beat treatment Tensile properties Fracture behavior Cryogenic
原文传递
Twin-wire SAW welding of 70 kg class high strength steel
17
作者 XU Lei QU Zhaoxia WANG Haitao 《Baosteel Technical Research》 CAS 2013年第3期14-18,共5页
The twin-wire SAW welding process was investigated using Baosteel 70 kg class high strength steel, and the properties of the joints were studied using conventional single and double-faced grooves as well as an optimiz... The twin-wire SAW welding process was investigated using Baosteel 70 kg class high strength steel, and the properties of the joints were studied using conventional single and double-faced grooves as well as an optimized groove. The results showed that by using an optimized double-faced groove, a small root face, and no back gouging, a small welding heat input was achieved and thus the joint strength and toughness were improved significantly. Also, removing back gouging reduced the labor required in the process. The weld reinforcement and deformation were observed to be rather small. 展开更多
关键词 twin-wire SAW groove type welding joint properties
下载PDF
Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding 被引量:9
18
作者 Hongshuang Di Qian Sun +1 位作者 Xiaonan Wang Jianping Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1561-1571,共11页
The microstructure and mechanical properties(strength, fatigue and formability) of dissimilar/similar weld joints between DP780 and DP980 steels were studied. The microstructure in fusion zone(FZ) was lath martens... The microstructure and mechanical properties(strength, fatigue and formability) of dissimilar/similar weld joints between DP780 and DP980 steels were studied. The microstructure in fusion zone(FZ) was lath martensite(LM), and alloying elements in the FZ were uniformly distributed. The hardness in the FZ of dissimilar weld joint was similar to the average value(375 HV) of the two similar weld joints. The microstructural evolution in heat affected zone(HAZ) of dissimilar/similar weld joints was as follows:LM(coarse-grained HAZ) →finer LM(fine-grained HAZ) →M-A constituent and ferrite(intercritically HAZ) →tempered martensite(TM) and ferrite(sub-critical HAZ). Lower hardness in intercritically HAZ and sub-critical HAZ(softening zones) was observed compared to base metal(BM) in dissimilar/similar weld joints. The size of softening zone was 0.2-0.3 mm and reduction in hardness was ~7.6%-12.7% of BM in all the weld joints, which did not influence the tensile properties of weld joints such that fracture location was in BM. Formability of dissimilar weld joints was inferior compared to similar weld joints because of the softening zone, non-uniform microstructure and hardness on the two sides of FZ. The effect of microstructure on fatigue life was not influenced due to the presence of welding concavity. 展开更多
关键词 Dual phase steel Laser welding Dissimilar weld joints Microstructure Mechanical properties Formability
原文传递
Microstructure and Mechanical Properties of Galvanized Steel/AA6061 Joints by Laser Fusion Brazing Welding 被引量:3
19
作者 Junxia L Wuxiong Yang +2 位作者 Shikai Wu Xudong Zhao Rongshi Xiao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期670-676,共7页
Laser fusion brazing welding was proposed.Galvanized steel/AA6061 lapped joint was obtained by laser fusion brazing welding technique using the laser-induced aluminium molten pool spreading and wetting the solid steel... Laser fusion brazing welding was proposed.Galvanized steel/AA6061 lapped joint was obtained by laser fusion brazing welding technique using the laser-induced aluminium molten pool spreading and wetting the solid steel surface.Wide joint interface was formed using the rectangular laser beam coupled with the synchronous powder feeding.The result showed that the tiny structure with the composition of a-Al and Al–Si eutectic was formed in the weld close to the Al side.And close to the steel side,a layer of compact Fe–Al–Si intermetallics,including the Al-rich FeAl3,Fe2Al5 phases and Al–Fe–Si s1 phase,was generated with the thickness of about 10–20 lm.Transverse tensile shows the brittlefractured characteristic along to the seam/steel interface with the maximum yield strength of 152.5 MPa due to the existence of hardening phases s1 and Al–Fe intermetallics. 展开更多
关键词 Galvanized steel Aluminium alloy Laser welding Interface Microstructural characterization Mechanical property
原文传递
Tensile Properties and Fusion Zone Hardening for GMAW and MIEA Welds of a 7075-T651 Aluminum Alloy 被引量:4
20
作者 N.Alatorre R.R.Ambriz +3 位作者 B.Noureddine A.Amrouche A.Talha D.Jaramillo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期694-704,共11页
Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)w... Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging. 展开更多
关键词 Welding 7075-T651 Dilution fraction Tensile properties Fusion zone hardening
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部