Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of...Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.展开更多
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory...The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.展开更多
Background: The inadequacy in the completeness of the Laboratory Request Form (LRF) has been reported as one of the major sources of errors during the pre-analytical step of laboratory analysis. To prevent the occurre...Background: The inadequacy in the completeness of the Laboratory Request Form (LRF) has been reported as one of the major sources of errors during the pre-analytical step of laboratory analysis. To prevent the occurrence of such errors, this study aimed at assessing the level of completeness of LRFs. Methods: A retrospective analysis of laboratory request forms was conducted at the Clinical Biology Laboratory of the Kinshasa University Clinic, DR Congo, between November 2021 to May 2022. The LRFs were evaluated according to the completeness of all sections including administrative data of the patient, data of physician who ordered the test, relevant patient’s clinical data and data of the biological sample. Results: From a total of 2842 LRFs evaluated, none was fully completed with all required information. Particularly, patient’s clinical data including the medical history, provisional diagnosis and current treatment, were the most absent in 99% LRFs. However, two sections related to patient’s ID and prescribed test were informed in 100% LRFs. Conclusion: The results of this preanalytical audit can serve as an improvement opportunity focused on strengthening awareness about complete filling of LRF.展开更多
Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and...Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.展开更多
The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well produc...The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.展开更多
Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the k...Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks.展开更多
Current methods for predicting missing values in datasets often rely on simplistic approaches such as taking median value of attributes, limiting their applicability. Real-world observations can be diverse, taking sto...Current methods for predicting missing values in datasets often rely on simplistic approaches such as taking median value of attributes, limiting their applicability. Real-world observations can be diverse, taking stock price as example, ranging from prices post-IPO to values before a company’s collapse, or instances where certain data points are missing due to stock suspension. In this paper, we propose a novel approach using Nonlinear Matrix Completion (NIMC) and Deep Matrix Completion (DIMC) to predict associations, and conduct experiment on financial data between dates and stocks. Our method leverages various types of stock observations to capture latent factors explaining the observed date-stock associations. Notably, our approach is nonlinear, making it suitable for datasets with nonlinear structures, such as the Russell 3000. Unlike traditional methods that may suffer from information loss, NIMC and DIMC maintain nearly complete information, especially in high-dimensional parameters. We compared our approach with state-of-the-art linear methods, including Inductive Matrix Completion, Nonlinear Inductive Matrix Completion, and Deep Inductive Matrix Completion. Our findings show that the nonlinear matrix completion method is particularly effective for handling nonlinear structured data, as exemplified by the Russell 3000. Additionally, we validate the information loss of the three methods across different dimensionalities.展开更多
In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advan...In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advances in technologies and developments of well completion and stimulation with hydrajet are reviewed in this paper. Experiments were conducted to study the characteristics of abrasive water jetting and to optimize jet parameters, which can provide methods for the well completion and hydrajet fracturing. Deep-penetrating hydrajet perforating can create a 2-3 m clean hole with a diameter of 20-35 mm. Multilayer hydrajet fracturing is a process whereby multiple layers are stimulated in a single run without using mechanical packers, thereby reducing operation procedure and risk. Multilateral radial wells can be drilled using hydraulic jetting up to 100 m in length. The technique to remove sand particles and plugs with rotating self-resonating cavitating water jets in horizontal wellbores has been developed and oilfield-tested, which shows promising, cost effective prospects.展开更多
Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density pe...Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.展开更多
The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,...The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,borehole collapse,loss,and high friction),and associated formation damage can severely impact well completion rates,increase costs,and reduce efficiencies.Water-based drilling fluids possess certain advantages over oil-based drilling fluids(OBDFs)and may offer lasting solutions to resolve the aforementioned issues.However,a significant breakthrough with this material has not yet been made,and major technical problems continue to hinder the economic and large-scale development of unconventional oil and gas.Here,the international frontier external method,which only improves drilling fluid inhibition and lubricity,is expanded into an internal-external technique that improves the overall wellbore quality during drilling.Bionic technologies are introduced into the chemical material synthesis process to imitate the activity of life.A novel drilling and completion fluid technique was developed to improve wellbore quality during drilling and safeguard formation integrity.Macroscopic and microscopic analyses indicated that in terms of wellbore stability,lubricity,and formation protection,this approach could outperform methods that use typical OBDFs.The proposed method also achieves a classification upgrade from environmentally protective drilling fluid to an ecologically friendly drilling fluid.The developed technology was verified in more than 1000 unconventional oil and gas wells in China,and the results indicate significant alleviation of the formation damage attributed to borehole collapse,loss,and high friction.It has been recognized as an effective core technology for exploiting unconventional oil and gas resources.This study introduces a novel research direction for formation protection technology and demonstrates that observations and learning from the natural world can provide an inexhaustible source of ideas and inspire the creation of original materials,technologies,and theories for petroleum engineering.展开更多
The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure.To explore the root cause of such phenomena,experiments on the mechanical properties and...The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure.To explore the root cause of such phenomena,experiments on the mechanical properties and interface bonding strength of a cement sheath have been carried out taking the LS25-1 high-temperature and high-pressure(HTHP)gas field as an example.Moreover,a constitutive model of the cement sheath has been defined and verified both by means of a full-scale HTHP cement sheath sealing integrity evaluation experiment and three-dimensional finite element simulations.The results show that the low initial cementing surface strength is the root cause of cement sheath interface bonding failure.When the pressure in the casing exceeds a certain limit,the stress caused by the change in the internal pressure in the casing is transmitted to the cement sheath,resulting in the degradation of the interface stiffness of the cement sheath.However,with an increase in the casing wall thickness,the stress transmission capacity decreases.Therefore,it is concluded that improving the interfacial cementing strength,appropriately increasing the casing wall thickness and increasing the initial stress of the cement sheath are the keys to ensuring the sealing integrity of the cement sheath in high-temperature and high-pressure gas wells.展开更多
It is shown that stress fields within the earth are the principle control for hydraulic fracture direction in horizontal shale gas wells. Hydraulic fracturing is a process of increasing permeability within gas shales ...It is shown that stress fields within the earth are the principle control for hydraulic fracture direction in horizontal shale gas wells. Hydraulic fracturing is a process of increasing permeability within gas shales and involves a sophisticated organization of technology, good planning and proper management of equipment over a very short time period to be successful. The direction and extent of the induced fractures can be determined in near real-time at the well site via application of earthquake seismology theory in a now common process known as frac mapping. Next to the horizontal lateral azimuth, the total volume of slurry pumped into the well is a major factor in determining well EURs. Vertical fracture growth can be controlled and is important in concentration of the slurry within the main zone target zone that has the high TOC and porosity. Cemented casing with perforations is currently the most used method for zone isolation. New open-hole sleeve packers may eventually provide more flexibility in fracture design while also providing a means for refracturing multi-stage fractured horizontal wells, a technique not now commonly available. Multi-Stage fracture design requires incorporating rock properties with fracturing effect simulations and then verifying results using 3D reservoir simulations. Maximizing the gas recovery factors and EURs can be accomplished through use of closely spaced laterals with inter-fingered fracture stages and exploiting the stress shadow fracturing phenomenon. Even greater EURs may be possible if the wells can be refractured thereby opening up additional permeability channels. Shale gas development has progressed in an environmentally sensitive manner within the U.S. and will continue in this manner. During the past ten years, all of these technologies have been either newly developed or were the advancement of existing technology with modifications. The opportunity exists to take these proven technologies to other areas of the world for exploitation of shale gas reservoirs.展开更多
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t...The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.展开更多
Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running...Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.展开更多
On February 24, 1993, when the appraisal meeting of the Sino-Japanese Joint Research Project of Well-off Household Residences was held in Beijing, Person-in-charge from the China Building Technology Development and Re...On February 24, 1993, when the appraisal meeting of the Sino-Japanese Joint Research Project of Well-off Household Residences was held in Beijing, Person-in-charge from the China Building Technology Development and Research Centre and the Japan International Cooperation Undertakings Group signed the project appraisal report. It marked the successful completion of this three-year joint research project.展开更多
We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuab...We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuable time misspelling and retyping, and some people are not happy to type large sentences because they face unnecessary words or grammatical issues. So, for this reason, word predictive systems help to exchange textual information more quickly, easier, and comfortably for all people. These systems predict the next most probable words and give users to choose of the needed word from these suggested words. Word prediction can help the writer by predicting the next word and helping complete the sentence correctly. This research aims to forecast the most suitable next word to complete a sentence for any given context. In this research, we have worked on the Bangla language. We have presented a process that can expect the next maximum probable and proper words and suggest a complete sentence using predicted words. In this research, GRU-based RNN has been used on the N-gram dataset to develop the proposed model. We collected a large dataset using multiple sources in the Bangla language and also compared it to the other approaches that have been used such as LSTM, and Naive Bayes. But this suggested approach provides excellent exactness than others. Here, the Unigram model provides 88.22%, Bi-gram model is 99.24%, Tri-gram model is 97.69%, and 4-gram and 5-gram models provide 99.43% and 99.78% on average accurateness. We think that our proposed method profound impression on Bangla search engines.展开更多
BACKGROUND Nigeria is one of the thirty high burden countries with significant contribution to the global childhood tuberculosis epidemic.Tuberculosis annual risk for children could be as high as 4%particularly in hig...BACKGROUND Nigeria is one of the thirty high burden countries with significant contribution to the global childhood tuberculosis epidemic.Tuberculosis annual risk for children could be as high as 4%particularly in high tuberculosis(TB)prevalent communities.Isoniazid(INH)Preventive Therapy has been shown to prevent TB incidence but data on its implementation among children are scarce.AIM To determine the completion of INH among under six children that were exposed to adults with smear positive pulmonary TB in Lagos,Nigeria.METHODS This was a hospital-based retrospective cross-sectional review of 265 medical records of eligible children<6 years old enrolled for INH across 32 private hospitals in Lagos,Nigeria.The study took place between July and September 2020.Data was collected on independent variables(age,gender,type of facility,TB screening,dose and weight)and outcome variables(INH outcome and proportion lost to follow up across months 1-6 of INH treatment).RESULTS About 53.8%of the participants were female,95.4%were screened for TB and none was diagnosed of having TB.The participants’age ranged from 1 to 72 mo with a mean of 36.01±19.67 mo,and 40.2%were between the ages of 1-24 mo.Only 155(59.2%)of the 262 participants initiated on INH completed the six-month treatment.Cumulatively,107(41.0%)children were lost to follow-up at the end of the sixth month.Of the cumulative 107 loss to follow-up while on INH,largest drop-offs were reported at the end of month 2,52(49%)followed by 20(19%),17(16%),11(10.2%)and 7(6.5%)at months 3,4,5 and 6 respectively.The analysis showed that there was no significant association between age,gender,type of facility and completion of INH treatment(P>0.005).CONCLUSION This study demonstrated suboptimal INH completion rate among children with only 6 out of 10 children initiated on INH who completed a 6-mo treatment in Lagos,Nigeria.The huge drop-offs in the first 2 mo of INH calls for innovative strategies such as the use of 60-d INH calendar that would facilitate reminder and early engagement of children on INH and their caregivers in care and across the entire period of treatment.展开更多
By analyzing the corrosion of phosphate completion fluid on the P110 steel at 170 °C, the high-temperature corrosion mechanism of phosphate completion fluid was revealed, and a corrosion inhibition method by memb...By analyzing the corrosion of phosphate completion fluid on the P110 steel at 170 °C, the high-temperature corrosion mechanism of phosphate completion fluid was revealed, and a corrosion inhibition method by membrane transformation was proposed and an efficient membrane-forming agent was selected. Scanning electron microscope (SEM) images, X-ray energy spectrum and X-ray diffraction results were used to characterize the microscopic morphology, elemental composition and phase composition of the precipitation membrane on the surface of the test piece. The effect and mechanism of corrosion inhibition by membrane transformation were clarified. The phosphate completion fluid eroded the test piece by high-temperature water vapor and its hydrolyzed products to form a membrane of iron phosphate corrosion product. By changing the corrosion reaction path, the Zn2+ membrane-forming agent could generate KZnPO4 precipitation membrane with high temperature resistance, uniform thickness and tight crystal packing on the surface of the test piece, which could inhibit the corrosion of the test piece, with efficiency up to 69.63%. The Cu2+ membrane-forming agent electrochemically reacted with Fe to precipitate trace elemental Cu on the surface of the test piece, thus forming a protective membrane, which could inhibit metal corrosion, with efficiency up to 96.64%, but the wear resistance was poor. After combining 0.05% Cu2+ and 0.25% Zn2+, a composite protective membrane of KZnPO4 crystal and elemental Cu was formed on the surface of the test piece. The corrosion inhibition efficiency reached 93.03%, which ensured the high corrosion inhibition efficiency and generated a precipitation membrane resistant to temperature and wear.展开更多
Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic ...Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic discrimination among similar entities and inconspicuous semantic features result in low accuracy when completing aquatic medicine knowledge graph with complex relationships.In this study,an aquatic medicine knowledge graph completion method(TransH+HConvAM)is proposed.Firstly,TransH is applied to split the vector plane between entities and relations,ameliorating the poor completion effect caused by low semantic resolution of entities.Then,hybrid convolution is introduced to obtain the global interaction of triples based on the complete interaction between head/tail entities and relations,which improves the semantic features of triples and enhances the completion effect of complex relationships in the graph.Experiments are conducted to verify the performance of the proposed method.The MR,MRR and Hit@10 of the TransH+HConvAM are found to be 674,0.339,and 0.361,respectively.This study shows that the model effectively overcomes the poor completion effect of complex relationships and improves the construction quality of the aquatic medicine knowledge graph,providing technical support for intelligent aquaculture.展开更多
基金Supported by the Project of National Natural Science Foundation of China(52234002,42230814)。
文摘Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.
基金This work is financially sponsored by Tarim Oilfield“Study on Adaptability Evaluation and Parameter Optimization of Completion Technology in Bozi Block,Tarim Oilfield”(Item Number:201021113436).
文摘The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.
文摘Background: The inadequacy in the completeness of the Laboratory Request Form (LRF) has been reported as one of the major sources of errors during the pre-analytical step of laboratory analysis. To prevent the occurrence of such errors, this study aimed at assessing the level of completeness of LRFs. Methods: A retrospective analysis of laboratory request forms was conducted at the Clinical Biology Laboratory of the Kinshasa University Clinic, DR Congo, between November 2021 to May 2022. The LRFs were evaluated according to the completeness of all sections including administrative data of the patient, data of physician who ordered the test, relevant patient’s clinical data and data of the biological sample. Results: From a total of 2842 LRFs evaluated, none was fully completed with all required information. Particularly, patient’s clinical data including the medical history, provisional diagnosis and current treatment, were the most absent in 99% LRFs. However, two sections related to patient’s ID and prescribed test were informed in 100% LRFs. Conclusion: The results of this preanalytical audit can serve as an improvement opportunity focused on strengthening awareness about complete filling of LRF.
文摘Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.
文摘The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.
基金the Beijing Municipal Science and Technology Program(No.Z231100001323004).
文摘Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks.
文摘Current methods for predicting missing values in datasets often rely on simplistic approaches such as taking median value of attributes, limiting their applicability. Real-world observations can be diverse, taking stock price as example, ranging from prices post-IPO to values before a company’s collapse, or instances where certain data points are missing due to stock suspension. In this paper, we propose a novel approach using Nonlinear Matrix Completion (NIMC) and Deep Matrix Completion (DIMC) to predict associations, and conduct experiment on financial data between dates and stocks. Our method leverages various types of stock observations to capture latent factors explaining the observed date-stock associations. Notably, our approach is nonlinear, making it suitable for datasets with nonlinear structures, such as the Russell 3000. Unlike traditional methods that may suffer from information loss, NIMC and DIMC maintain nearly complete information, especially in high-dimensional parameters. We compared our approach with state-of-the-art linear methods, including Inductive Matrix Completion, Nonlinear Inductive Matrix Completion, and Deep Inductive Matrix Completion. Our findings show that the nonlinear matrix completion method is particularly effective for handling nonlinear structured data, as exemplified by the Russell 3000. Additionally, we validate the information loss of the three methods across different dimensionalities.
基金The authors express their appreciation to the National Natural Science Foundation of China (No.50774089)the High-tech Research and Development Program of China (No.2007AA09Z315) for the fi nancial support of this work
文摘In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advances in technologies and developments of well completion and stimulation with hydrajet are reviewed in this paper. Experiments were conducted to study the characteristics of abrasive water jetting and to optimize jet parameters, which can provide methods for the well completion and hydrajet fracturing. Deep-penetrating hydrajet perforating can create a 2-3 m clean hole with a diameter of 20-35 mm. Multilayer hydrajet fracturing is a process whereby multiple layers are stimulated in a single run without using mechanical packers, thereby reducing operation procedure and risk. Multilateral radial wells can be drilled using hydraulic jetting up to 100 m in length. The technique to remove sand particles and plugs with rotating self-resonating cavitating water jets in horizontal wellbores has been developed and oilfield-tested, which shows promising, cost effective prospects.
文摘Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.
基金supported by the National Natural Science Foundation of China Youth Science Fund Project(52004297)China Postdoctoral Innovative Talent Support Program(BX20200384)。
文摘The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,borehole collapse,loss,and high friction),and associated formation damage can severely impact well completion rates,increase costs,and reduce efficiencies.Water-based drilling fluids possess certain advantages over oil-based drilling fluids(OBDFs)and may offer lasting solutions to resolve the aforementioned issues.However,a significant breakthrough with this material has not yet been made,and major technical problems continue to hinder the economic and large-scale development of unconventional oil and gas.Here,the international frontier external method,which only improves drilling fluid inhibition and lubricity,is expanded into an internal-external technique that improves the overall wellbore quality during drilling.Bionic technologies are introduced into the chemical material synthesis process to imitate the activity of life.A novel drilling and completion fluid technique was developed to improve wellbore quality during drilling and safeguard formation integrity.Macroscopic and microscopic analyses indicated that in terms of wellbore stability,lubricity,and formation protection,this approach could outperform methods that use typical OBDFs.The proposed method also achieves a classification upgrade from environmentally protective drilling fluid to an ecologically friendly drilling fluid.The developed technology was verified in more than 1000 unconventional oil and gas wells in China,and the results indicate significant alleviation of the formation damage attributed to borehole collapse,loss,and high friction.It has been recognized as an effective core technology for exploiting unconventional oil and gas resources.This study introduces a novel research direction for formation protection technology and demonstrates that observations and learning from the natural world can provide an inexhaustible source of ideas and inspire the creation of original materials,technologies,and theories for petroleum engineering.
基金The authors gratefully acknowledge the CNOOC scientific research project“Study of risk assessment and countermeasures of well drilling and completion under ultrahigh temperature and high pressure”and“Research on development feasibility of LS25-1 gas field”(Grant Nos.YXKY-ZX-09-2021,2020FS-08).
文摘The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure.To explore the root cause of such phenomena,experiments on the mechanical properties and interface bonding strength of a cement sheath have been carried out taking the LS25-1 high-temperature and high-pressure(HTHP)gas field as an example.Moreover,a constitutive model of the cement sheath has been defined and verified both by means of a full-scale HTHP cement sheath sealing integrity evaluation experiment and three-dimensional finite element simulations.The results show that the low initial cementing surface strength is the root cause of cement sheath interface bonding failure.When the pressure in the casing exceeds a certain limit,the stress caused by the change in the internal pressure in the casing is transmitted to the cement sheath,resulting in the degradation of the interface stiffness of the cement sheath.However,with an increase in the casing wall thickness,the stress transmission capacity decreases.Therefore,it is concluded that improving the interfacial cementing strength,appropriately increasing the casing wall thickness and increasing the initial stress of the cement sheath are the keys to ensuring the sealing integrity of the cement sheath in high-temperature and high-pressure gas wells.
文摘It is shown that stress fields within the earth are the principle control for hydraulic fracture direction in horizontal shale gas wells. Hydraulic fracturing is a process of increasing permeability within gas shales and involves a sophisticated organization of technology, good planning and proper management of equipment over a very short time period to be successful. The direction and extent of the induced fractures can be determined in near real-time at the well site via application of earthquake seismology theory in a now common process known as frac mapping. Next to the horizontal lateral azimuth, the total volume of slurry pumped into the well is a major factor in determining well EURs. Vertical fracture growth can be controlled and is important in concentration of the slurry within the main zone target zone that has the high TOC and porosity. Cemented casing with perforations is currently the most used method for zone isolation. New open-hole sleeve packers may eventually provide more flexibility in fracture design while also providing a means for refracturing multi-stage fractured horizontal wells, a technique not now commonly available. Multi-Stage fracture design requires incorporating rock properties with fracturing effect simulations and then verifying results using 3D reservoir simulations. Maximizing the gas recovery factors and EURs can be accomplished through use of closely spaced laterals with inter-fingered fracture stages and exploiting the stress shadow fracturing phenomenon. Even greater EURs may be possible if the wells can be refractured thereby opening up additional permeability channels. Shale gas development has progressed in an environmentally sensitive manner within the U.S. and will continue in this manner. During the past ten years, all of these technologies have been either newly developed or were the advancement of existing technology with modifications. The opportunity exists to take these proven technologies to other areas of the world for exploitation of shale gas reservoirs.
基金supported in part by Sub Project of National Key Research and Development plan in 2020.NO.2020YFC1511704Beijing Information Science and Technology University.NO.2020KYNH212,NO.2021CGZH302+1 种基金Beijing Science and Technology Project(Grant No.Z211100004421009)in part by the National Natural Science Foundation of China(Grant No.61971048)。
文摘The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.
基金Supported by the Innovative Research Group Project of China National Natural Science Foundation(51821092)Key Project of China National Natural Science Foundation(U1762214).
文摘Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.
文摘On February 24, 1993, when the appraisal meeting of the Sino-Japanese Joint Research Project of Well-off Household Residences was held in Beijing, Person-in-charge from the China Building Technology Development and Research Centre and the Japan International Cooperation Undertakings Group signed the project appraisal report. It marked the successful completion of this three-year joint research project.
文摘We use a lot of devices in our daily life to communicate with others. In this modern world, people use email, Facebook, Twitter, and many other social network sites for exchanging information. People lose their valuable time misspelling and retyping, and some people are not happy to type large sentences because they face unnecessary words or grammatical issues. So, for this reason, word predictive systems help to exchange textual information more quickly, easier, and comfortably for all people. These systems predict the next most probable words and give users to choose of the needed word from these suggested words. Word prediction can help the writer by predicting the next word and helping complete the sentence correctly. This research aims to forecast the most suitable next word to complete a sentence for any given context. In this research, we have worked on the Bangla language. We have presented a process that can expect the next maximum probable and proper words and suggest a complete sentence using predicted words. In this research, GRU-based RNN has been used on the N-gram dataset to develop the proposed model. We collected a large dataset using multiple sources in the Bangla language and also compared it to the other approaches that have been used such as LSTM, and Naive Bayes. But this suggested approach provides excellent exactness than others. Here, the Unigram model provides 88.22%, Bi-gram model is 99.24%, Tri-gram model is 97.69%, and 4-gram and 5-gram models provide 99.43% and 99.78% on average accurateness. We think that our proposed method profound impression on Bangla search engines.
文摘BACKGROUND Nigeria is one of the thirty high burden countries with significant contribution to the global childhood tuberculosis epidemic.Tuberculosis annual risk for children could be as high as 4%particularly in high tuberculosis(TB)prevalent communities.Isoniazid(INH)Preventive Therapy has been shown to prevent TB incidence but data on its implementation among children are scarce.AIM To determine the completion of INH among under six children that were exposed to adults with smear positive pulmonary TB in Lagos,Nigeria.METHODS This was a hospital-based retrospective cross-sectional review of 265 medical records of eligible children<6 years old enrolled for INH across 32 private hospitals in Lagos,Nigeria.The study took place between July and September 2020.Data was collected on independent variables(age,gender,type of facility,TB screening,dose and weight)and outcome variables(INH outcome and proportion lost to follow up across months 1-6 of INH treatment).RESULTS About 53.8%of the participants were female,95.4%were screened for TB and none was diagnosed of having TB.The participants’age ranged from 1 to 72 mo with a mean of 36.01±19.67 mo,and 40.2%were between the ages of 1-24 mo.Only 155(59.2%)of the 262 participants initiated on INH completed the six-month treatment.Cumulatively,107(41.0%)children were lost to follow-up at the end of the sixth month.Of the cumulative 107 loss to follow-up while on INH,largest drop-offs were reported at the end of month 2,52(49%)followed by 20(19%),17(16%),11(10.2%)and 7(6.5%)at months 3,4,5 and 6 respectively.The analysis showed that there was no significant association between age,gender,type of facility and completion of INH treatment(P>0.005).CONCLUSION This study demonstrated suboptimal INH completion rate among children with only 6 out of 10 children initiated on INH who completed a 6-mo treatment in Lagos,Nigeria.The huge drop-offs in the first 2 mo of INH calls for innovative strategies such as the use of 60-d INH calendar that would facilitate reminder and early engagement of children on INH and their caregivers in care and across the entire period of treatment.
基金Supported by the National Natural Science Foundation of China(5215000105)Huo Yingdong Education Foundation(171043).
文摘By analyzing the corrosion of phosphate completion fluid on the P110 steel at 170 °C, the high-temperature corrosion mechanism of phosphate completion fluid was revealed, and a corrosion inhibition method by membrane transformation was proposed and an efficient membrane-forming agent was selected. Scanning electron microscope (SEM) images, X-ray energy spectrum and X-ray diffraction results were used to characterize the microscopic morphology, elemental composition and phase composition of the precipitation membrane on the surface of the test piece. The effect and mechanism of corrosion inhibition by membrane transformation were clarified. The phosphate completion fluid eroded the test piece by high-temperature water vapor and its hydrolyzed products to form a membrane of iron phosphate corrosion product. By changing the corrosion reaction path, the Zn2+ membrane-forming agent could generate KZnPO4 precipitation membrane with high temperature resistance, uniform thickness and tight crystal packing on the surface of the test piece, which could inhibit the corrosion of the test piece, with efficiency up to 69.63%. The Cu2+ membrane-forming agent electrochemically reacted with Fe to precipitate trace elemental Cu on the surface of the test piece, thus forming a protective membrane, which could inhibit metal corrosion, with efficiency up to 96.64%, but the wear resistance was poor. After combining 0.05% Cu2+ and 0.25% Zn2+, a composite protective membrane of KZnPO4 crystal and elemental Cu was formed on the surface of the test piece. The corrosion inhibition efficiency reached 93.03%, which ensured the high corrosion inhibition efficiency and generated a precipitation membrane resistant to temperature and wear.
基金supported by the Key Laboratory of Environment Controlled Aquaculture(Dalian Ocean University)Ministry of Education(No.2021-MOEKLECA-KF-05)the National Natural Science Foundation of China Youth Science(No.61802046)。
文摘Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic discrimination among similar entities and inconspicuous semantic features result in low accuracy when completing aquatic medicine knowledge graph with complex relationships.In this study,an aquatic medicine knowledge graph completion method(TransH+HConvAM)is proposed.Firstly,TransH is applied to split the vector plane between entities and relations,ameliorating the poor completion effect caused by low semantic resolution of entities.Then,hybrid convolution is introduced to obtain the global interaction of triples based on the complete interaction between head/tail entities and relations,which improves the semantic features of triples and enhances the completion effect of complex relationships in the graph.Experiments are conducted to verify the performance of the proposed method.The MR,MRR and Hit@10 of the TransH+HConvAM are found to be 674,0.339,and 0.361,respectively.This study shows that the model effectively overcomes the poor completion effect of complex relationships and improves the construction quality of the aquatic medicine knowledge graph,providing technical support for intelligent aquaculture.