Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a...Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.展开更多
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage t...Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.展开更多
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earth...An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.展开更多
The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the...The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.展开更多
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of ...This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.展开更多
Significant postseismic deformation of the 2008 M W 7.9 Wenchuan earthquake has been observed from GPS data of the first 14 days after the earthquake. The possible mechanisms for the rapid postseismic deformation are ...Significant postseismic deformation of the 2008 M W 7.9 Wenchuan earthquake has been observed from GPS data of the first 14 days after the earthquake. The possible mechanisms for the rapid postseismic deformation are assumed to be afterslip on the earthquake rupture plane and viscoelastic relaxation of coseismiclly stress change in the lower crust or upper mantle. We firstly use the constrained least squares method to find an afterslip model which can fit the GPS data best. The afterslip model can explain near-field data very well but shows considerable discrepancies in fitting far-field data. To estimate the effect due to the viscoelastic relaxation in the lower crust, we then ignore the contribution from the afterslip and attempt to invert the viscosity structure beneath the Longmenshan fault where the Wenchuan earthquake occurred from the postseismic deformation data. For this purpose, we use a viscoelastic model with a 2D geometry based on the geological and seismological observations and the coseismic slip distribution derived from the coseismic GPS and InSAR data. By means of a grid search we find that the optimum viscosity is 9×10 18 Pa·s for the middle-lower crust in the Chengdu Basin, 4×10 17 Pa·s for the middle-lower crust in the Chuanxi Plateau and 7×10 17 Pa·s for the low velocity zone in the Chuanxi plateau. The viscoelastic model explains the postseismic deformation observed in the far-field satisfactorily, but it is considerably worse than the afterslip model in fitting the near-fault data. It suggests therefore a hybrid model including both afterslip and relaxation effects. Since the viscoelastic model produces mainly the far-field surface deformation and has fewer degree of freedoms (three viscosity parameters) than the afterslip model with a huge number of source parameters, we fix the viscositiy structure as obtained before but redetermine the afterslip distribution using the residual data from the viscoelastic modeling. The redetermined afterslip distribution becomes physically more reasonable; it is more localized and exhibits a pattern spatially complementary with the coseismic rupture distribution. We conclude that the aseismic fault slip is responsible for the near-fault postseismic deformation, whereas the viscoelastic stress relaxation might be the major cause for the far-field postseismic deformation.展开更多
High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 We...High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.展开更多
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o...The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.展开更多
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruct...The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.展开更多
The 2008 Wenchuan earthquake resulted in a large number of fatalities and caused significant economic losses.Thousands of landslides,many of which are very large,were triggered by the earthquake.A majority of catastro...The 2008 Wenchuan earthquake resulted in a large number of fatalities and caused significant economic losses.Thousands of landslides,many of which are very large,were triggered by the earthquake.A majority of catastrophic landslides were distributed along the central Longmenshan fault system,at the eastern margin of the Tibetan Plateau.Some of the landslides resulted in sudden damming of rivers causing flooding,which in turn induced secondary sliding disasters.Among the most significant landslides,the Daguangbao landslide was the largest in volume with the maximum thickness.For this,a numerical model of the Daguangbao landslide,using the material point method(MPM),was developed to simulate the interaction of the seismic loads imposed on the slope.The numerical results then are compared with the post-earthquake profile.As a consequence of the landslide,a nearly vertical head scarp with a maximum height of about 700 m was generated.This is considered as a high risk situation that requires constant monitoring and evaluation.Finally,we propose a methodology based on Bayesian networks(BNs)to manage the risk associated with the stability of the rockwall at the Daguangbao landslide site.展开更多
Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wench...Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wenchuan earthquake,during which coseismic disturbances were recorded by 26 fluxgate magnetometer observatories.The geomagnetic disturbances have similar spatial and temporal patterns to seismic waves,except for various delays.Six proton magnetometer observatories recorded coseismic disturbances with very small amplitudes.In addition,fluxgate magnetometers registered largeamplitude disturbances that are likely to have included responses to seismic waves.However,two problems remain unresolved.First,why do these geomagnetic disturbances always arrive later than P waves?Second,why do the geomagnetic disturbances have spatial and temporal directivity similar to the main rupture direction of the earthquake?Solving these two problems may be crucial to find the mechanism responsible for generating these geomagnetic anomalies.展开更多
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km ...This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.展开更多
It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited d...It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited different torsional phenomena in 2008 Wenchuan earthquake. This paper introduces the torsional phenomena of all the statues on the zigzag bridge firstly. Then one eccentric- ity model is established and the equivalent rotational accelerations are calculated in order to analyze the causes of the torsional damage. In addition, the torsional components are synthesized by using translation accelerations recorded at Jiangyou station in the Wenchuan earthquake. The results show that the equivalent rotational acceleration is larger than the synthesized rotational components, which sug- gests that the torsional phenomena of the statues on the zigzag bridge might mainly come from its eccentricity. The comparison between the estimated torsional component at Jiangyou and that presented by Trifunac shows that they are in the same order. The research im- plies that the torsional phenomena in earthquakes are very complicated, and not only caused by torsional motions.展开更多
Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper anal...Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper analyzes the data from Wenchuan earthquake on both regional and local site scale. The analyses show that the Newmark accumulative displacement calculated from the ground motion recorded in a particular geological hazard zone corresponds to the hazard intensity in that zone; the larger the displacement, the more serious the geologic hazard. The calculated result also shows that the displacement is related to the Arias intensity, which represents the total energy released during the earthquake at the observation site. Secondly, this paper constructs an evaluation model of Newmark displacement calculated with Arias intensities to estimate the subsequent slope failure resulting from the earthquake. The calculated results based on the model fit well with the distribution of actual landslides, suggesting that this method is useful for hazard evaluation. Therefore, this type of model can be used for estimating regional-scale distribution of earthquake-induced landslides and their associated hazards immediately after an earthquake.展开更多
Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic se...Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic setting, where similar changes of water level and resistivity were observed at two other nearby sites. Our investigation suggests that this phenomenon was not caused by environmental disturbances, such as drought or borehole-drilling activity, but might be a precursor to the earthquake.展开更多
The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in ...The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.展开更多
The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were sig...The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were significantly smaller than those without such design, suggesting that the code has achieved the desired goal of seismic fortification. Buildings of different kinds of structures showed large differences in damages : Houses with steel-frames and shear walls or steel structures suffered the least damages ; those with frames or with brick-and-concrete structures suffered more; old cottages, the most.展开更多
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supported by the National Natural Science Foundation of China(42322702,42177131)。
文摘Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.
基金National Natural Science Foundation of China Under Grant No. 90715032 and 50808105National Basic Research Program of China Under Grant No. 2007CB714203
文摘Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.
文摘An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.
基金Nonprofit Industry Research Project of CEA under Grant No. 201208014National Natural Science Fund No. 51278473Environmental Protection Research Fund for Public Interest No. 201209040
文摘The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.
基金supported by State Key Laboratory of Earthquake Dynamics(project No. LED2008A03) Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS Fellows(No.201007605) to the first author (T.Togo),and by a 2009 Grant-in-Aid of Fukada Geological Institute
文摘This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.
基金supported by the Basic Research Foundation of Institute of Earthquake Science, China Earthquake Administration (02092421)
文摘Significant postseismic deformation of the 2008 M W 7.9 Wenchuan earthquake has been observed from GPS data of the first 14 days after the earthquake. The possible mechanisms for the rapid postseismic deformation are assumed to be afterslip on the earthquake rupture plane and viscoelastic relaxation of coseismiclly stress change in the lower crust or upper mantle. We firstly use the constrained least squares method to find an afterslip model which can fit the GPS data best. The afterslip model can explain near-field data very well but shows considerable discrepancies in fitting far-field data. To estimate the effect due to the viscoelastic relaxation in the lower crust, we then ignore the contribution from the afterslip and attempt to invert the viscosity structure beneath the Longmenshan fault where the Wenchuan earthquake occurred from the postseismic deformation data. For this purpose, we use a viscoelastic model with a 2D geometry based on the geological and seismological observations and the coseismic slip distribution derived from the coseismic GPS and InSAR data. By means of a grid search we find that the optimum viscosity is 9×10 18 Pa·s for the middle-lower crust in the Chengdu Basin, 4×10 17 Pa·s for the middle-lower crust in the Chuanxi Plateau and 7×10 17 Pa·s for the low velocity zone in the Chuanxi plateau. The viscoelastic model explains the postseismic deformation observed in the far-field satisfactorily, but it is considerably worse than the afterslip model in fitting the near-fault data. It suggests therefore a hybrid model including both afterslip and relaxation effects. Since the viscoelastic model produces mainly the far-field surface deformation and has fewer degree of freedoms (three viscosity parameters) than the afterslip model with a huge number of source parameters, we fix the viscositiy structure as obtained before but redetermine the afterslip distribution using the residual data from the viscoelastic modeling. The redetermined afterslip distribution becomes physically more reasonable; it is more localized and exhibits a pattern spatially complementary with the coseismic rupture distribution. We conclude that the aseismic fault slip is responsible for the near-fault postseismic deformation, whereas the viscoelastic stress relaxation might be the major cause for the far-field postseismic deformation.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2008A03)Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS fellows to the first author (T.Togo) and a Grant-in-Aid for young scientists(B) 201007605,and by a 2009 FGI Grant-in-Aid of Fukada Geological Institute
文摘High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.
基金sponsored by National Natural Science Foundation of China (No.40674043, 90814001)China Earthquake Admini-stration (Wenchuan Earthquake Scientific Survey 03-05)The contribution No. of this paper is RCEG 0905 of Geophysical Prospecting Center,China Earthquake Administration
文摘The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金supported by the National Key Technology R&D Program(Grant No. 2011BAK12B01)the Young Foundation of National Natural Science of China(Grant No.41202210)+1 种基金the Education Department Innovation Research Team Program(Grant No.IRT0812)the Young Foundation of Chengdu University of Technology and the Education Department of Sichuan Province (Grant Nos.2010QJ15 and 11ZB262)
文摘The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.
文摘The 2008 Wenchuan earthquake resulted in a large number of fatalities and caused significant economic losses.Thousands of landslides,many of which are very large,were triggered by the earthquake.A majority of catastrophic landslides were distributed along the central Longmenshan fault system,at the eastern margin of the Tibetan Plateau.Some of the landslides resulted in sudden damming of rivers causing flooding,which in turn induced secondary sliding disasters.Among the most significant landslides,the Daguangbao landslide was the largest in volume with the maximum thickness.For this,a numerical model of the Daguangbao landslide,using the material point method(MPM),was developed to simulate the interaction of the seismic loads imposed on the slope.The numerical results then are compared with the post-earthquake profile.As a consequence of the landslide,a nearly vertical head scarp with a maximum height of about 700 m was generated.This is considered as a high risk situation that requires constant monitoring and evaluation.Finally,we propose a methodology based on Bayesian networks(BNs)to manage the risk associated with the stability of the rockwall at the Daguangbao landslide site.
基金The National Key R&D Program of China(2017YFC1500502)provides the funding
文摘Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wenchuan earthquake,during which coseismic disturbances were recorded by 26 fluxgate magnetometer observatories.The geomagnetic disturbances have similar spatial and temporal patterns to seismic waves,except for various delays.Six proton magnetometer observatories recorded coseismic disturbances with very small amplitudes.In addition,fluxgate magnetometers registered largeamplitude disturbances that are likely to have included responses to seismic waves.However,two problems remain unresolved.First,why do these geomagnetic disturbances always arrive later than P waves?Second,why do the geomagnetic disturbances have spatial and temporal directivity similar to the main rupture direction of the earthquake?Solving these two problems may be crucial to find the mechanism responsible for generating these geomagnetic anomalies.
基金supported by State Key Laboratory of Earthquake Dynamics (projectNo. LED2010A05, LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD)
文摘This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.
基金supported by the National Natural Science Foundation of China (No. 50578125)
文摘It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited different torsional phenomena in 2008 Wenchuan earthquake. This paper introduces the torsional phenomena of all the statues on the zigzag bridge firstly. Then one eccentric- ity model is established and the equivalent rotational accelerations are calculated in order to analyze the causes of the torsional damage. In addition, the torsional components are synthesized by using translation accelerations recorded at Jiangyou station in the Wenchuan earthquake. The results show that the equivalent rotational acceleration is larger than the synthesized rotational components, which sug- gests that the torsional phenomena of the statues on the zigzag bridge might mainly come from its eccentricity. The comparison between the estimated torsional component at Jiangyou and that presented by Trifunac shows that they are in the same order. The research im- plies that the torsional phenomena in earthquakes are very complicated, and not only caused by torsional motions.
基金supported by Institute of Crustal Dynamics,China Earthquake Administration(No.ZDJ2010-28)the National Natural Science Foundation of China(No.40872209)
文摘Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper analyzes the data from Wenchuan earthquake on both regional and local site scale. The analyses show that the Newmark accumulative displacement calculated from the ground motion recorded in a particular geological hazard zone corresponds to the hazard intensity in that zone; the larger the displacement, the more serious the geologic hazard. The calculated result also shows that the displacement is related to the Arias intensity, which represents the total energy released during the earthquake at the observation site. Secondly, this paper constructs an evaluation model of Newmark displacement calculated with Arias intensities to estimate the subsequent slope failure resulting from the earthquake. The calculated results based on the model fit well with the distribution of actual landslides, suggesting that this method is useful for hazard evaluation. Therefore, this type of model can be used for estimating regional-scale distribution of earthquake-induced landslides and their associated hazards immediately after an earthquake.
基金supported by the National Natural Science Foundation ofChina(40930637)Basic Science Research Special Item of the Instituteof Geology,China Earthquake Administration(DF-IGCEA-0608210)Special Research Program of China Earthquake Administration(200808079)
文摘Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic setting, where similar changes of water level and resistivity were observed at two other nearby sites. Our investigation suggests that this phenomenon was not caused by environmental disturbances, such as drought or borehole-drilling activity, but might be a precursor to the earthquake.
基金supported by the National Basic Research Program of the Ministry of Science and Technology of the People’s Republic of China (973 Project, Grant No. 2008CB425801)
文摘The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.
基金supported by the Institute of Seismology,China Earthquake Administration ( IS200826056)
文摘The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were significantly smaller than those without such design, suggesting that the code has achieved the desired goal of seismic fortification. Buildings of different kinds of structures showed large differences in damages : Houses with steel-frames and shear walls or steel structures suffered the least damages ; those with frames or with brick-and-concrete structures suffered more; old cottages, the most.