期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The 30–60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea during May–September 被引量:3
1
作者 Jiangyu MAO Ming WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第5期550-566,共17页
This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30-60-day timescale during boreal summer(May-September). TRMM-ba... This study investigates the structure and propagation of intraseasonal sea surface temperature(SST) variability in the South China Sea(SCS) on the 30-60-day timescale during boreal summer(May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive(negative) SST anomalies accompanied by anomalous northeasterlies(southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux(MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the30-60-day SST variability in the SCS. 展开更多
关键词 sea surface temperature 30-60-day intraseasonal variability South China sea vertical entrainment
下载PDF
Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer 被引量:3
2
作者 Xinyu LI Riyu LU Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期931-942,共12页
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan... This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity. 展开更多
关键词 western North Pacific subtropical high East Asian westerly jet CIRCULATION RAINFALL sea surface temperature
下载PDF
Evolution of the 2015/16 El Nio and historical perspective since 1979 被引量:8
3
作者 Yan XUE Arun KUMAR 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第9期1572-1588,共17页
The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including ... The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including SST, surface winds,outgoing longwave radiation and subsurface temperature from an ensemble operational ocean reanalyses, and place this event in the context of historical ENSO events since 1979. One salient feature about the 2015/16 El Nio was a large number of westerly wind bursts and downwelling oceanic Kelvin waves(DWKVs). Four DWKVs were observed in April-November 2015 that initiated and enhanced the eastern-central Pacific warming. Eastward zonal current anomalies associated with DWKVs advected the warm pool water eastward in spring/summer. An upwelling Kelvin wave(UWKV) emerged in early November 2015 leading to a rapid decline of the event. Another outstanding feature was that NINO4 reached a historical high(1.7℃), which was 1℃(0.8℃) higher than that of the 1982/83(1997/98) El Nio . Although NINO3 was comparable to that of the 1982/83 and 1997/98 El Nio , NINO1+2 was much weaker. Consistently, enhanced convection was displaced 20 degree westward, and the maximum D20 anomaly was about 1/3.1/2 of that in 1997 and 1982 near the west coast of South America. 展开更多
关键词 ENSO sea surface temperature westerly wind bursts Ocean Kelvin waves Thermocline variability Ocean reanalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部