Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum bet...Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China.展开更多
This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relations...This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relationship between this new type of deposit and unroofing of the Emeishan large igneous province (ELIP) is focused. Along with the zoning pattern in spatial distribution of diverse weathering-related deposits along the southern and southeastern margins of the ELIP, it is suggested that the genesis of the iron-polymetallic deposit was specialized by factors of coastal paleogeography in hot-humid climate, where iron-enriched laterites formed, and repetitive marine transgression-regression occurred during the Late Permian.展开更多
对岩石风化强度反应敏感的化学风化指标是定量评价岩石风化程度的重要参数。评述了包括帕克风化指数(weathering index of Parker,WIP)、风化势能指数(weathering potential index,WPI)、化学蚀变指数(chemical index of alteration,CIA...对岩石风化强度反应敏感的化学风化指标是定量评价岩石风化程度的重要参数。评述了包括帕克风化指数(weathering index of Parker,WIP)、风化势能指数(weathering potential index,WPI)、化学蚀变指数(chemical index of alteration,CIA)等12种在以往研究中被认为适合用于岩浆岩风化程度判定的化学风化指标的优点及其局限性。引入了岩石氧化因数X_(o)(X_(o)=Fe_(2)O_(3)/(FeO+Fe_(2)O_(3)))评价火山岩的风化程度,并使用该指标评价了12种化学风化指标在评价超基性岩和基性岩风化中的适用性。在黔西晚二叠世超基性岩和基性玄武岩的实际应用中,将X_(o)≤0.44和X_(o)≤0.55作为超基性岩和基性玄武岩未遭受风化的下限,结合定性分析结果,按风化程度将两种岩石分为新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石。X_(o)与12种化学风化指标散点交会的结果显示:BWI、A-FM、LOI这3种指标既适合于风化初期超基性岩和基性玄武岩风化程度的评价,也适合风化中后期超基性岩和基性玄武岩风化程度的评价,其余9种指标仅对风化中后期超基性岩和基性玄武岩的风化程度反应敏感。研究可为超基性岩和基性玄武岩岩质区的工程地质调查与勘察、潜在地质灾害评价、地质灾害隐患防治等提供新思路、新方法,对相似岩质区的岩体风化程度评价研究提供参考。展开更多
基金supported by PMO of Guizhou Institute of Technology for the Study of Iron Deposit Oreforming Rule,Ore-controlling Factors and Ore-forming Predication in the Western Region of Guizhou Province(No.406,2015)PMO of Innovation Team of Guizhou General Institutes of Higher Education for Survey of Underlying Ore Deposit(No.56,2015)+1 种基金the Education Reform of the Guizhou Institute of Technology(No.2015JGY18)the Study for Existing State of Rare Earth Elements in Low Grade Iron Ore from Associated Multi-metal Deposits in Northwest Guizhou(Ref.No.05,2014)
文摘Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41373037 and 41173048)Integrated Exploration Project of the Weining-Shuicheng Iron-Polymetallic Deposits,Guizhou Province
文摘This paper reports an integrated study of in sire U-Pb geochronology and elemental geochemistry of zircons from the Xianglushan iron-polymetallic deposit in western Guizhou Province, Southwest China. Genetic relationship between this new type of deposit and unroofing of the Emeishan large igneous province (ELIP) is focused. Along with the zoning pattern in spatial distribution of diverse weathering-related deposits along the southern and southeastern margins of the ELIP, it is suggested that the genesis of the iron-polymetallic deposit was specialized by factors of coastal paleogeography in hot-humid climate, where iron-enriched laterites formed, and repetitive marine transgression-regression occurred during the Late Permian.
文摘对岩石风化强度反应敏感的化学风化指标是定量评价岩石风化程度的重要参数。评述了包括帕克风化指数(weathering index of Parker,WIP)、风化势能指数(weathering potential index,WPI)、化学蚀变指数(chemical index of alteration,CIA)等12种在以往研究中被认为适合用于岩浆岩风化程度判定的化学风化指标的优点及其局限性。引入了岩石氧化因数X_(o)(X_(o)=Fe_(2)O_(3)/(FeO+Fe_(2)O_(3)))评价火山岩的风化程度,并使用该指标评价了12种化学风化指标在评价超基性岩和基性岩风化中的适用性。在黔西晚二叠世超基性岩和基性玄武岩的实际应用中,将X_(o)≤0.44和X_(o)≤0.55作为超基性岩和基性玄武岩未遭受风化的下限,结合定性分析结果,按风化程度将两种岩石分为新鲜岩石、微风化岩石、中风化岩石、强风化岩石和全风化岩石。X_(o)与12种化学风化指标散点交会的结果显示:BWI、A-FM、LOI这3种指标既适合于风化初期超基性岩和基性玄武岩风化程度的评价,也适合风化中后期超基性岩和基性玄武岩风化程度的评价,其余9种指标仅对风化中后期超基性岩和基性玄武岩的风化程度反应敏感。研究可为超基性岩和基性玄武岩岩质区的工程地质调查与勘察、潜在地质灾害评价、地质灾害隐患防治等提供新思路、新方法,对相似岩质区的岩体风化程度评价研究提供参考。