Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significan...Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.展开更多
The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence in the Paleogene and post-rifting thermal subsidence in t...The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence in the Paleogene and post-rifting thermal subsidence in the Neogene-Quaternary. The episodic tectonic evolution and syndepositional faulting had significant influence on the fault basins in terms of accommodation space, deposition rate, and depositional facies zones. In this study, the tectonic deformation characteristics and the tectonic-depositional evolution of the Western Sag of the Cenozoic Liaohe Depression were investigated by comprehensive analysis of the available geological and geophysical data using the modern theory of tectonic geology and the balanced section technique. The tectonic deformation of the Cenozoic fault basin was characterized by superimposed faults and depression. In addition, there existed relatively independent but still related extensional tectonic systems and strike-slip tectonic systems. The tectonic evolution of the fault basin involved five stages, i.e., initial rifting stage (E2s4), intense faulting stage (E2s3), fault-depression transition stage (E3sl2), differential uplifting stage (E3d), and depression stage (N-Q). According to the characteristics of tectonic development and evolution of the Western Sag, the depositional evolution in the Cenozoic fault basin was divided into two stages, i.e., multi-episodic rifting filling in the Paleogene and post-rifting filling in the Neogene-Quaternary. The former rifting stage was further subdivided into four episodes with different characteristics of depositional development. The episodic faulting controlled the filling process and filling pattern of the Cenozoic Western Sag as well as the development and spatial distribution of associated depositional systems, whereas the syndepositional faults that developed in multiple stages in various tectonic positions controlled the development of depositional systems and sand bodies in the Western Sag. That is, the fault terraces on steep slopes controlled the development of sand bodies, the fault terraces on gentle slopes controlled the development of low-stand fan bodies, and the fault terraces or fault troughs in the central basin controlled the development of fluxoturbidite bodies.展开更多
One of the most important tasks of evaluating natural resources of petroliferous basins is to determine the organic matter abundance of source rocks in the basin.The usual method for assessing the organic carbon conte...One of the most important tasks of evaluating natural resources of petroliferous basins is to determine the organic matter abundance of source rocks in the basin.The usual method for assessing the organic carbon content of source rocks is based on laboratory analyses.There is a deviation in calculating organic carbon content due to the heterogeneous distribution of organic matter and the artificial factors when sampling.According to the continuous characteristics of information logging,the conventional logging curves(mainly acoustics and resistivity,etc.) were calibrated with the organic carbon experimental data of cores,cuttings or sidewall cores.The organic carbon content of source rocks of the 4 th(Es 4) and 3 rd(Es 3) members of the Shahejie Formation in western sag in the Liaohe depression was estimated directly by a great amount of continuous data including resistivity and acoustic logging,etc.Comparison between the results from computer processing and lab analysis of logging data shows that the organic carbon contents derived from the computer processing of logging data have the same reliability and accuracy as the lab analysis results.The present data show that this method is suitable to evaluate the source rocks of western sag in the Liaohe depression and has great potential in evaluating natural resources of sedimentary basins in the future.On the basis of logging data of source rocks,experimental data and existing geochemical analyses of the Liaohe Oilfield,the corresponding total organic carbon(TOC) isograms of source rocks were plotted.The source rocks of Es 4 and Es 3 of the Shahejie Formation are thought to be beneficial to hydrocarbon accumulation due to the high TOC.展开更多
Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging inform...Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.展开更多
A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed aro...A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.展开更多
基金National Natural Science Foundation (40772086)Common advanced projects of CNPC oil and gas exploration (07-01C-01-04)
文摘Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.
基金supported by the National Basic Research Program of China (973 Program) (No. 2006CB202300)the Major Scientific and Technical Project of China National Petroleum Corporation (No. 07-01C-01-04)
文摘The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence in the Paleogene and post-rifting thermal subsidence in the Neogene-Quaternary. The episodic tectonic evolution and syndepositional faulting had significant influence on the fault basins in terms of accommodation space, deposition rate, and depositional facies zones. In this study, the tectonic deformation characteristics and the tectonic-depositional evolution of the Western Sag of the Cenozoic Liaohe Depression were investigated by comprehensive analysis of the available geological and geophysical data using the modern theory of tectonic geology and the balanced section technique. The tectonic deformation of the Cenozoic fault basin was characterized by superimposed faults and depression. In addition, there existed relatively independent but still related extensional tectonic systems and strike-slip tectonic systems. The tectonic evolution of the fault basin involved five stages, i.e., initial rifting stage (E2s4), intense faulting stage (E2s3), fault-depression transition stage (E3sl2), differential uplifting stage (E3d), and depression stage (N-Q). According to the characteristics of tectonic development and evolution of the Western Sag, the depositional evolution in the Cenozoic fault basin was divided into two stages, i.e., multi-episodic rifting filling in the Paleogene and post-rifting filling in the Neogene-Quaternary. The former rifting stage was further subdivided into four episodes with different characteristics of depositional development. The episodic faulting controlled the filling process and filling pattern of the Cenozoic Western Sag as well as the development and spatial distribution of associated depositional systems, whereas the syndepositional faults that developed in multiple stages in various tectonic positions controlled the development of depositional systems and sand bodies in the Western Sag. That is, the fault terraces on steep slopes controlled the development of sand bodies, the fault terraces on gentle slopes controlled the development of low-stand fan bodies, and the fault terraces or fault troughs in the central basin controlled the development of fluxoturbidite bodies.
基金supported jointly by the Science and Technology Project of Oil and Gas Exploration of the China National Petroleum Corporation (CNPC)(07-01c-01-04)the State Key Laboratory of Petroleum Resource and Prospecting of China University of Petroleum (pro 2009-02)
文摘One of the most important tasks of evaluating natural resources of petroliferous basins is to determine the organic matter abundance of source rocks in the basin.The usual method for assessing the organic carbon content of source rocks is based on laboratory analyses.There is a deviation in calculating organic carbon content due to the heterogeneous distribution of organic matter and the artificial factors when sampling.According to the continuous characteristics of information logging,the conventional logging curves(mainly acoustics and resistivity,etc.) were calibrated with the organic carbon experimental data of cores,cuttings or sidewall cores.The organic carbon content of source rocks of the 4 th(Es 4) and 3 rd(Es 3) members of the Shahejie Formation in western sag in the Liaohe depression was estimated directly by a great amount of continuous data including resistivity and acoustic logging,etc.Comparison between the results from computer processing and lab analysis of logging data shows that the organic carbon contents derived from the computer processing of logging data have the same reliability and accuracy as the lab analysis results.The present data show that this method is suitable to evaluate the source rocks of western sag in the Liaohe depression and has great potential in evaluating natural resources of sedimentary basins in the future.On the basis of logging data of source rocks,experimental data and existing geochemical analyses of the Liaohe Oilfield,the corresponding total organic carbon(TOC) isograms of source rocks were plotted.The source rocks of Es 4 and Es 3 of the Shahejie Formation are thought to be beneficial to hydrocarbon accumulation due to the high TOC.
文摘Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.
文摘A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.