As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and...This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese snow temperature Academy of Sciences. lo-layer and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stableperiod, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1℃ cm-1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period-Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.展开更多
Malus sieversii(wild apple tree),only distributed in the Tianshan Mountains in Central Asia,is a tertiary relic species and an ancestral species of cultivated apples.However,existing natural populations of wild apple ...Malus sieversii(wild apple tree),only distributed in the Tianshan Mountains in Central Asia,is a tertiary relic species and an ancestral species of cultivated apples.However,existing natural populations of wild apple trees have been declining.To date,spatiotemporal variations in the growth status of declining wild apple trees and influencing factors in the narrow valley areas in the Tianshan Mountains remain unclear.In this study,field investigation and sampling were carried out in three years(2016-2018)at four elevations(1300,1400,1500,and 1600 m)in the Qiaolakesai Valley(a typical longitudinal narrow valley in the Yili River Valley)of the western Tianshan Mountains in Xinyuan County,Xinjiang Uygur Autonomous Region,China.Projective coverage,dead branch percentage,and 18 twig traits(these 20 parameters were collectively referred to as plant traits)were determined to comprehensively reflect the growth status of declining wild apple trees.The values of dead branch percentage ranged from 36%to 59%,with a mean of 40%.Year generally showed higher impact on plant traits than elevation.In 2017 and 2018,projective coverage,leaf size,leaf nitrogen concentration,and nitrogen to phosphorous ratio were markedly higher than those in 2016.However,dead branch percentage and leaf and stem phosphorous concentrations showed the opposite trend.Most of the topological parameters of plant trait networks differed in the three years,but the strength of trait-trait association increased year by year.The mean difference between day and night temperatures(MDT),annual accumulative precipitation,soil electrical conductivity,and soil pH had the greatest impact on the plant trait matrix.The growth status of declining wild apple trees was directly and positively affected by MDT and leaf size.In conclusion,the growth of declining wild apple trees distributed in the narrow valley areas was more sensitive to interannual environmental changes than elevation changes.The results are of great significance for further revealing the decline mechanism of wild apple trees in the Tianshan Mountains.展开更多
The genesis of the Carboniferous volcanic rocks in the Dahalajunshan group, mainly consisting of trachytes and trachy-andesites and distributing widely in western Tianshan Mountains, remains to be controversial. It ha...The genesis of the Carboniferous volcanic rocks in the Dahalajunshan group, mainly consisting of trachytes and trachy-andesites and distributing widely in western Tianshan Mountains, remains to be controversial. It has been proposed to be relevant to “rift” or “plume”. Detailed pe-trology and geochemical data presented in this paper show that these volcanic rocks represent typical continental arc magmatism. The volcanic rocks are mainly trachy-andesitic, and the magma source is enriched in LILE, Th and Pb, and depleted in HFSE and Ce. Trace element geochemical study suggests that the basalts could be modeled by 7%-11% partial melt of garnet lherzolite. The volcanic rocks in the Dahala-junshan group are neither the products of “rift” nor so-called “plume” but represent the continental island arc of the Pa-leo-Southern Tianshan Ocean. The mantle wedge had been modified by the melt generating in subduction zone during a long evolution history of this island arc. The continental crust materials (i.e. mainly sediment on ocean floor) had been added into island arc through melt in subduction zone. Volcanic rocks occurring in different regions might represent magma eruption in different time. The zircon SHRIMP dat-ing indicates that the ages of the basalt varies between 334.0 Ma and 394.9 Ma. The 13 analyses give an average age of 353.7 ±4.5 Ma (MSWD = 1.7). The apparent ages of zircons in trachy-andesite vary between 293.0 Ma and 465.4 Ma. All analyses fall on the U-Pb concordant line and are divided into two groups. 8 analyses produce an average age of 312.8±4.2 Ma (MSWD = 1.7), which represents the crystal-lizing age of zircon rims in trachy-andesite. The acquired two ages (i.e. 354 and 313 Ma) belong to the Early Carboniferous and Late Carboniferous epochs, respectively. Thus, the Da-halajunshan group would be separated into several groups with the accumulation of high-quality age dating and data of trace element and isotopic geochemistry, in our opinion.展开更多
The <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that the eclogite facies rocks of the Hasiate slice in the western Tianshan Mountains were formed at the early stage of Devonian (401 Ma) and...The <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that the eclogite facies rocks of the Hasiate slice in the western Tianshan Mountains were formed at the early stage of Devonian (401 Ma) and had been uplifted to the greenschist facies tectonic level in the middle stage of Devonian (381 Ma). The formation and uplift of the blueschists of the Akesayi slice are constrained to the late stage of Devonian (370-364 Ma). The different tectonic slices in the high-pressure metamorphic belt have experienced the different uplift history.展开更多
The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults....The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults. Generally, the geologists ascribed it to the UpperCarboniferous according to Pseudostaffella sp., Profusulinella sp. and Fusulinella sp. found fromthe limestone and sandy limestone of Aiketik. Our radiolarian fossils were obtained from the chertsamples collected from the Haladaok section located at the upper Tuoshihan River. The fossils mainlyinclude Albaillella undulata Deflandre, Albaillella paradoxa Deflandre, Albaillella sp. aff. A.paradoxa Deflandre, Albaillella sp. cf. A. deflandrei Gourmelon, Albaillella sp., Albaillellaexcelsa Ishiga, Kito and Imoto (?), Belowea variabilis (Ormiston et Lane), Callella cf. C.parvispinosa Won, Entactinia cf. E. tortispina Ormiston et Lane, Entactinia aff. E. tortispinaOrmiston et Lane, Entactinia variospina Won, Entactinia sp., Eostylodictya rota (Won),Latentifistula impella (Ormistone et Lane) (?), Latentifistula turgita Omiston et Lane,Latentifistulidae gen. et. sp. indet. and Polyentactinia cf. aranea Gourmelon. Among them,Albaillella excelsa Ishiga, Kito and Imoto (?) is a Late Permian species with some elementsuncertain as there is only one poorly-preserved fossil of this species found so far. And tworadiolarian assemblages can be identified from the other fossils. One is the early EarlyCarboniferous assemblage represented by Albaillella undulata Deflandre, Albaillella paradoxa andAlbaillella sp. cf. A. deflandrei Gourmelon. And the other is the late Early Carboniferousassemblage represented by Eostylodictya rota (Won). This is the first discovery of radiolarianfossils in the Aiketik Group, also the first discovery of Late Permian radiolarian fossils in theSouth Tianshan Mountains. Meanwhile, this is the current westernmost sampling site of radiolarianfossils in the South Tianshan Mountains.展开更多
The Snowmelt Runoff Model (SRM) is one of a very few models in the world today that requires remote sensing derived snow cover as model input. Owing to its simple data requirements and use of remote sensing to provide...The Snowmelt Runoff Model (SRM) is one of a very few models in the world today that requires remote sensing derived snow cover as model input. Owing to its simple data requirements and use of remote sensing to provide snow cover information, SRM is ideal for use in data sparse regions, particularly in remote and inaccessible high mountain watersheds. In order to verify the applicability of SRM in an environment of continental climate, a test of SRM is performed for the Gongnaisi River basin in the western Tianshan Mountains, the results show that two SRM average goodness-of-fit statistics for simulations, Nash-Sutcliff coefficient (R2) and volume difference (DV), are 0.87 and 0.90%, respectively. As compared with the application results over 80 basins in 25 different countries around the world, SRM performs well in the Gongnaisi River basin. The results also show that SRM can be a validated snowmelt runoff model capable of being applied in the western Tianshan Mountains. On the basis of snowmelt runoff simulation, together with a set of simplified hypothetical climate scenarios, SRM is also used to simulate the effects of climate change on snow cover and the consecutive snowmelt runoff. For a given hypothetical temperature increase of 4℃, the snow coverage and snowmelt season shift towards earlier dates, and the snowmelt runoff, as a result, is changed significantly at the same time. The simulation results show that the snow cover is sensitive to changes of climate, especially to the increase of temperature, the major effect of climate change will be a time shifting of snowmelt runoff to early spring months, resulting in a redistribution of seasonally runoff throughout the whole snowmelt season.展开更多
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period fr...The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.展开更多
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
基金supported by social welfare of Ministry Science and Technology Development of China (Grant No.GYHY200706008)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciencesthe Oasis Scholar "Doctor" Talent Training Program (0771021) of Xinjiang Institute of Ecology
文摘This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese snow temperature Academy of Sciences. lo-layer and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stableperiod, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1℃ cm-1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period-Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0502)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2005020402)+1 种基金the Youth Innovation Promotion Association Project,Chinese Academy of Sciences(Y201976)the National Science and Technology Basic Program of China(2019FY100204).
文摘Malus sieversii(wild apple tree),only distributed in the Tianshan Mountains in Central Asia,is a tertiary relic species and an ancestral species of cultivated apples.However,existing natural populations of wild apple trees have been declining.To date,spatiotemporal variations in the growth status of declining wild apple trees and influencing factors in the narrow valley areas in the Tianshan Mountains remain unclear.In this study,field investigation and sampling were carried out in three years(2016-2018)at four elevations(1300,1400,1500,and 1600 m)in the Qiaolakesai Valley(a typical longitudinal narrow valley in the Yili River Valley)of the western Tianshan Mountains in Xinyuan County,Xinjiang Uygur Autonomous Region,China.Projective coverage,dead branch percentage,and 18 twig traits(these 20 parameters were collectively referred to as plant traits)were determined to comprehensively reflect the growth status of declining wild apple trees.The values of dead branch percentage ranged from 36%to 59%,with a mean of 40%.Year generally showed higher impact on plant traits than elevation.In 2017 and 2018,projective coverage,leaf size,leaf nitrogen concentration,and nitrogen to phosphorous ratio were markedly higher than those in 2016.However,dead branch percentage and leaf and stem phosphorous concentrations showed the opposite trend.Most of the topological parameters of plant trait networks differed in the three years,but the strength of trait-trait association increased year by year.The mean difference between day and night temperatures(MDT),annual accumulative precipitation,soil electrical conductivity,and soil pH had the greatest impact on the plant trait matrix.The growth status of declining wild apple trees was directly and positively affected by MDT and leaf size.In conclusion,the growth of declining wild apple trees distributed in the narrow valley areas was more sensitive to interannual environmental changes than elevation changes.The results are of great significance for further revealing the decline mechanism of wild apple trees in the Tianshan Mountains.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 40342018);the Major State Basic Research Development Program (Grant No.2001 CB409807)
文摘The genesis of the Carboniferous volcanic rocks in the Dahalajunshan group, mainly consisting of trachytes and trachy-andesites and distributing widely in western Tianshan Mountains, remains to be controversial. It has been proposed to be relevant to “rift” or “plume”. Detailed pe-trology and geochemical data presented in this paper show that these volcanic rocks represent typical continental arc magmatism. The volcanic rocks are mainly trachy-andesitic, and the magma source is enriched in LILE, Th and Pb, and depleted in HFSE and Ce. Trace element geochemical study suggests that the basalts could be modeled by 7%-11% partial melt of garnet lherzolite. The volcanic rocks in the Dahala-junshan group are neither the products of “rift” nor so-called “plume” but represent the continental island arc of the Pa-leo-Southern Tianshan Ocean. The mantle wedge had been modified by the melt generating in subduction zone during a long evolution history of this island arc. The continental crust materials (i.e. mainly sediment on ocean floor) had been added into island arc through melt in subduction zone. Volcanic rocks occurring in different regions might represent magma eruption in different time. The zircon SHRIMP dat-ing indicates that the ages of the basalt varies between 334.0 Ma and 394.9 Ma. The 13 analyses give an average age of 353.7 ±4.5 Ma (MSWD = 1.7). The apparent ages of zircons in trachy-andesite vary between 293.0 Ma and 465.4 Ma. All analyses fall on the U-Pb concordant line and are divided into two groups. 8 analyses produce an average age of 312.8±4.2 Ma (MSWD = 1.7), which represents the crystal-lizing age of zircon rims in trachy-andesite. The acquired two ages (i.e. 354 and 313 Ma) belong to the Early Carboniferous and Late Carboniferous epochs, respectively. Thus, the Da-halajunshan group would be separated into several groups with the accumulation of high-quality age dating and data of trace element and isotopic geochemistry, in our opinion.
文摘The <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that the eclogite facies rocks of the Hasiate slice in the western Tianshan Mountains were formed at the early stage of Devonian (401 Ma) and had been uplifted to the greenschist facies tectonic level in the middle stage of Devonian (381 Ma). The formation and uplift of the blueschists of the Akesayi slice are constrained to the late stage of Devonian (370-364 Ma). The different tectonic slices in the high-pressure metamorphic belt have experienced the different uplift history.
基金the Chinese Nationa1Natural Science Foun dation (Grant 40072077) the Tarim Oil Field Company,Petro China(Grant2098050230).
文摘The Aiketik Group, distributed at the western end of the South TianshanMountains, China, is an important lithostratigraphic unit involved in the South Tianshan orogen. Itis separated from the adjacent rocks by faults. Generally, the geologists ascribed it to the UpperCarboniferous according to Pseudostaffella sp., Profusulinella sp. and Fusulinella sp. found fromthe limestone and sandy limestone of Aiketik. Our radiolarian fossils were obtained from the chertsamples collected from the Haladaok section located at the upper Tuoshihan River. The fossils mainlyinclude Albaillella undulata Deflandre, Albaillella paradoxa Deflandre, Albaillella sp. aff. A.paradoxa Deflandre, Albaillella sp. cf. A. deflandrei Gourmelon, Albaillella sp., Albaillellaexcelsa Ishiga, Kito and Imoto (?), Belowea variabilis (Ormiston et Lane), Callella cf. C.parvispinosa Won, Entactinia cf. E. tortispina Ormiston et Lane, Entactinia aff. E. tortispinaOrmiston et Lane, Entactinia variospina Won, Entactinia sp., Eostylodictya rota (Won),Latentifistula impella (Ormistone et Lane) (?), Latentifistula turgita Omiston et Lane,Latentifistulidae gen. et. sp. indet. and Polyentactinia cf. aranea Gourmelon. Among them,Albaillella excelsa Ishiga, Kito and Imoto (?) is a Late Permian species with some elementsuncertain as there is only one poorly-preserved fossil of this species found so far. And tworadiolarian assemblages can be identified from the other fossils. One is the early EarlyCarboniferous assemblage represented by Albaillella undulata Deflandre, Albaillella paradoxa andAlbaillella sp. cf. A. deflandrei Gourmelon. And the other is the late Early Carboniferousassemblage represented by Eostylodictya rota (Won). This is the first discovery of radiolarianfossils in the Aiketik Group, also the first discovery of Late Permian radiolarian fossils in theSouth Tianshan Mountains. Meanwhile, this is the current westernmost sampling site of radiolarianfossils in the South Tianshan Mountains.
基金supported by the National Natural Science Foundation of China(Grand No.40235053)Resources&Ecological Environment Key Projects of the Chinese Academy of Sciences(Grant No.kz951-b1-213).
文摘The Snowmelt Runoff Model (SRM) is one of a very few models in the world today that requires remote sensing derived snow cover as model input. Owing to its simple data requirements and use of remote sensing to provide snow cover information, SRM is ideal for use in data sparse regions, particularly in remote and inaccessible high mountain watersheds. In order to verify the applicability of SRM in an environment of continental climate, a test of SRM is performed for the Gongnaisi River basin in the western Tianshan Mountains, the results show that two SRM average goodness-of-fit statistics for simulations, Nash-Sutcliff coefficient (R2) and volume difference (DV), are 0.87 and 0.90%, respectively. As compared with the application results over 80 basins in 25 different countries around the world, SRM performs well in the Gongnaisi River basin. The results also show that SRM can be a validated snowmelt runoff model capable of being applied in the western Tianshan Mountains. On the basis of snowmelt runoff simulation, together with a set of simplified hypothetical climate scenarios, SRM is also used to simulate the effects of climate change on snow cover and the consecutive snowmelt runoff. For a given hypothetical temperature increase of 4℃, the snow coverage and snowmelt season shift towards earlier dates, and the snowmelt runoff, as a result, is changed significantly at the same time. The simulation results show that the snow cover is sensitive to changes of climate, especially to the increase of temperature, the major effect of climate change will be a time shifting of snowmelt runoff to early spring months, resulting in a redistribution of seasonally runoff throughout the whole snowmelt season.
基金the State Key Basic Research of China(2001CB409803)the National Natural Science Foundation of China(40373017) National 305 Project of Xinjiang(96-915-03-02).
文摘The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.